Center for Theoretical Neuroscience and Department of Psychiatry, Columbia University, New York, NY 10032, USA.
Neural Comput. 2011 May;23(5):1071-132. doi: 10.1162/NECO_a_00118. Epub 2011 Feb 7.
Given recent experimental results suggesting that neural circuits may evolve through multiple firing states, we develop a framework for estimating state-dependent neural response properties from spike train data. We modify the traditional hidden Markov model (HMM) framework to incorporate stimulus-driven, non-Poisson point-process observations. For maximal flexibility, we allow external, time-varying stimuli and the neurons' own spike histories to drive both the spiking behavior in each state and the transitioning behavior between states. We employ an appropriately modified expectation-maximization algorithm to estimate the model parameters. The expectation step is solved by the standard forward-backward algorithm for HMMs. The maximization step reduces to a set of separable concave optimization problems if the model is restricted slightly. We first test our algorithm on simulated data and are able to fully recover the parameters used to generate the data and accurately recapitulate the sequence of hidden states. We then apply our algorithm to a recently published data set in which the observed neuronal ensembles displayed multistate behavior and show that inclusion of spike history information significantly improves the fit of the model. Additionally, we show that a simple reformulation of the state space of the underlying Markov chain allows us to implement a hybrid half-multistate, half-histogram model that may be more appropriate for capturing the complexity of certain data sets than either a simple HMM or a simple peristimulus time histogram model alone.
鉴于最近的实验结果表明,神经回路可能通过多种放电状态进行进化,我们开发了一种从尖峰列车数据中估计与状态相关的神经反应特性的框架。我们修改了传统的隐马尔可夫模型 (HMM) 框架,以纳入刺激驱动的非泊松点过程观测。为了最大的灵活性,我们允许外部、时变的刺激和神经元自身的尖峰历史来驱动每个状态中的尖峰行为和状态之间的转换行为。我们采用适当修改的期望最大化算法来估计模型参数。期望步骤通过 HMM 的标准前向-后向算法来解决。如果模型略有限制,最大化步骤简化为一组可分离的凹优化问题。我们首先在模拟数据上测试我们的算法,能够完全恢复用于生成数据的参数,并准确地再现隐藏状态的序列。然后,我们将我们的算法应用于最近发表的一组数据中,其中观察到的神经元集合显示出多状态行为,并表明包括尖峰历史信息显著提高了模型的拟合度。此外,我们表明,对底层马尔可夫链的状态空间进行简单的重新表述,允许我们实现一种混合半多状态、半直方图模型,与简单的 HMM 或简单的刺激后时间直方图模型相比,该模型更适合捕获某些数据集的复杂性。