Suppr超能文献

噬菌体为什么编码外毒素和其他毒力因子。

Why bacteriophage encode exotoxins and other virulence factors.

机构信息

Department of Microbiology, Ohio State University, Mansfield, Ohio, USA.

出版信息

Evol Bioinform Online. 2007 Feb 28;1:97-110.

Abstract

This study considers gene location within bacteria as a function of genetic element mobility. Our emphasis is on prophage encoding of bacterial virulence factors (VFs). At least four mechanisms potentially contribute to phage encoding of bacterial VFs: (i) Enhanced gene mobility could result in greater VF gene representation within bacterial populations. We question, though, why certain genes but not others might benefit from this mobility. (ii) Epistatic interactions-between VF genes and phage genes that enhance VF utility to bacteria-could maintain phage genes via selection acting on individual, VF-expressing bacteria. However, is this mechanism sufficient to maintain the rest of phage genomes or, without gene co-regulation, even genetic linkage between phage and VF genes? (iii) Phage could amplify VFs during disease progression by carrying them to otherwise commensal bacteria colocated within the same environment. However, lytic phage kill bacteria, thus requiring assumptions of inclusive fitness within bacterial populations to explain retention of phage-mediated VF amplification for the sake of bacterial utility. Finally, (iv) phage-encoded VFs could enhance phage Darwinian fitness, particularly by acting as ecosystem-modifying agents. That is, VF-supplied nutrients could enhance phage growth by increasing the density or by improving the physiology of phage-susceptible bacteria. Alternatively, VF-mediated break down of diffusion-inhibiting spatial structure found within the multicellular bodies of host organisms could augment phage dissemination to new bacteria or to environments. Such phage-fitness enhancing mechanisms could apply particularly given VF expression within microbiologically heterogeneous environments, ie, ones where phage have some reasonable potential to acquire phage-susceptible bacteria.

摘要

本研究将细菌中的基因位置视为遗传元件移动性的函数。我们的重点是噬菌体编码细菌毒力因子(VF)。至少有四种机制可能导致噬菌体编码细菌 VF:(i)增强基因的移动性可能会导致细菌群体中更多的 VF 基因代表。然而,我们质疑为什么某些基因而不是其他基因可能受益于这种移动性。(ii)VF 基因和噬菌体基因之间的上位相互作用——增强噬菌体对细菌的 VF 利用——可以通过对表达 VF 的单个细菌进行选择来维持噬菌体基因。然而,这种机制足以维持噬菌体基因组的其余部分,还是在没有基因共同调节的情况下,即使在噬菌体和 VF 基因之间保持遗传连锁?(iii)噬菌体可以通过携带它们到同一环境中原本共生的细菌中,在疾病进展过程中放大 VF。然而,裂解噬菌体杀死细菌,因此需要假设细菌种群内的包容性适合度,以解释为了细菌的利益而保留噬菌体介导的 VF 放大。最后,(iv)噬菌体编码的 VF 可以增强噬菌体的达尔文适应性,特别是通过充当生态系统修饰剂。也就是说,VF 提供的营养可以通过增加密度或改善噬菌体易感细菌的生理学来增强噬菌体的生长。或者,VF 介导的打破宿主生物多细胞体内扩散抑制空间结构可以增加噬菌体向新细菌或环境的传播。这些噬菌体适应性增强机制在微生物异质环境中尤其适用,即在噬菌体有一定合理的潜力获得噬菌体易感细菌的环境中。

相似文献

1
Why bacteriophage encode exotoxins and other virulence factors.
Evol Bioinform Online. 2007 Feb 28;1:97-110.
2
Carriage of λ Latent Virus Is Costly for Its Bacterial Host due to Frequent Reactivation in Monoxenic Mouse Intestine.
PLoS Genet. 2016 Feb 12;12(2):e1005861. doi: 10.1371/journal.pgen.1005861. eCollection 2016 Feb.
3
Comprehensive Virulence Gene Profiling of Bovine Non- Staphylococci Based on Whole-Genome Sequencing Data.
mSystems. 2019 Mar 5;4(2). doi: 10.1128/mSystems.00098-18. eCollection 2019 Mar-Apr.
4
The Diverse Impacts of Phage Morons on Bacterial Fitness and Virulence.
Adv Virus Res. 2019;103:1-31. doi: 10.1016/bs.aivir.2018.08.001. Epub 2018 Oct 3.
5
Phage Morons Play an Important Role in Pseudomonas aeruginosa Phenotypes.
J Bacteriol. 2018 Oct 23;200(22). doi: 10.1128/JB.00189-18. Print 2018 Nov 15.
6
Cheating, facilitation and cooperation regulate the effectiveness of phage-encoded exotoxins as antipredator molecules.
Microbiologyopen. 2019 Feb;8(2):e00636. doi: 10.1002/mbo3.636. Epub 2018 Apr 19.
8
Role of bacteriophage-encoded exotoxins in the evolution of bacterial pathogens.
Future Microbiol. 2011 Dec;6(12):1461-73. doi: 10.2217/fmb.11.124.
10
Bacteriophage evolution given spatial constraint.
J Theor Biol. 2007 Sep 7;248(1):111-9. doi: 10.1016/j.jtbi.2007.02.014. Epub 2007 Mar 1.

引用本文的文献

3
Gut virome: New key players in the pathogenesis of inflammatory bowel disease.
World J Methodol. 2025 Jun 20;15(2):92592. doi: 10.5662/wjm.v15.i2.92592.
4
Isolation of phages infecting the zoonotic pathogen reveals novel structural and genomic characteristics.
bioRxiv. 2025 Jan 7:2025.01.07.631744. doi: 10.1101/2025.01.07.631744.
5
PhageScanner: a reconfigurable machine learning framework for bacteriophage genomic and metagenomic feature annotation.
Front Microbiol. 2024 Sep 17;15:1446097. doi: 10.3389/fmicb.2024.1446097. eCollection 2024.
6
Four Novel Bacteriophages Isolated from Baltic Sea Water Infect Colonizers of .
Viruses. 2023 Jul 9;15(7):1525. doi: 10.3390/v15071525.
7
Conjugative transfer of streptococcal prophages harboring antibiotic resistance and virulence genes.
ISME J. 2023 Sep;17(9):1467-1481. doi: 10.1038/s41396-023-01463-4. Epub 2023 Jun 27.
8
Prophages and plasmids can display opposite trends in the types of accessory genes they carry.
Proc Biol Sci. 2023 Jun 28;290(2001):20231088. doi: 10.1098/rspb.2023.1088. Epub 2023 Jun 21.
9
Translating phage therapy into the clinic: Recent accomplishments but continuing challenges.
PLoS Biol. 2023 May 23;21(5):e3002119. doi: 10.1371/journal.pbio.3002119. eCollection 2023 May.
10
The Role of Temperate Phages in Bacterial Pathogenicity.
Microorganisms. 2023 Feb 21;11(3):541. doi: 10.3390/microorganisms11030541.

本文引用的文献

1
TRADEOFF BETWEEN HORIZONTAL AND VERTICAL MODES OF TRANSMISSION IN BACTERIAL PLASMIDS.
Evolution. 1998 Apr;52(2):315-329. doi: 10.1111/j.1558-5646.1998.tb01634.x.
3
2004 ASM Conference on the New Phage Biology: the 'Phage Summit'.
Mol Microbiol. 2005 Mar;55(5):1300-14. doi: 10.1111/j.1365-2958.2005.04509.x.
4
Diversity and host range of Shiga toxin-encoding phage.
Infect Immun. 2004 Dec;72(12):7131-9. doi: 10.1128/IAI.72.12.7131-7139.2004.
5
Human Escherichia coli O157:H7 genetic marker in isolates of bovine origin.
Emerg Infect Dis. 2004 Aug;10(8):1482-5. doi: 10.3201/eid1008.030784.
6
Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion.
Microbiol Mol Biol Rev. 2004 Sep;68(3):560-602, table of contents. doi: 10.1128/MMBR.68.3.560-602.2004.
7
Phage-host interaction: an ecological perspective.
J Bacteriol. 2004 Jun;186(12):3677-86. doi: 10.1128/JB.186.12.3677-3686.2004.
8
Ecology of prokaryotic viruses.
FEMS Microbiol Rev. 2004 May;28(2):127-81. doi: 10.1016/j.femsre.2003.08.001.
9
Evolution of virulence.
Infect Dis Clin North Am. 2004 Mar;18(1):1-15. doi: 10.1016/S0891-5520(03)00099-0.
10
Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system.
Mol Microbiol. 2004 Mar;51(6):1691-704. doi: 10.1111/j.1365-2958.2003.03934.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验