Department of Microbiology, Ohio State University, Mansfield, Ohio, USA.
Evol Bioinform Online. 2007 Feb 28;1:97-110.
This study considers gene location within bacteria as a function of genetic element mobility. Our emphasis is on prophage encoding of bacterial virulence factors (VFs). At least four mechanisms potentially contribute to phage encoding of bacterial VFs: (i) Enhanced gene mobility could result in greater VF gene representation within bacterial populations. We question, though, why certain genes but not others might benefit from this mobility. (ii) Epistatic interactions-between VF genes and phage genes that enhance VF utility to bacteria-could maintain phage genes via selection acting on individual, VF-expressing bacteria. However, is this mechanism sufficient to maintain the rest of phage genomes or, without gene co-regulation, even genetic linkage between phage and VF genes? (iii) Phage could amplify VFs during disease progression by carrying them to otherwise commensal bacteria colocated within the same environment. However, lytic phage kill bacteria, thus requiring assumptions of inclusive fitness within bacterial populations to explain retention of phage-mediated VF amplification for the sake of bacterial utility. Finally, (iv) phage-encoded VFs could enhance phage Darwinian fitness, particularly by acting as ecosystem-modifying agents. That is, VF-supplied nutrients could enhance phage growth by increasing the density or by improving the physiology of phage-susceptible bacteria. Alternatively, VF-mediated break down of diffusion-inhibiting spatial structure found within the multicellular bodies of host organisms could augment phage dissemination to new bacteria or to environments. Such phage-fitness enhancing mechanisms could apply particularly given VF expression within microbiologically heterogeneous environments, ie, ones where phage have some reasonable potential to acquire phage-susceptible bacteria.
本研究将细菌中的基因位置视为遗传元件移动性的函数。我们的重点是噬菌体编码细菌毒力因子(VF)。至少有四种机制可能导致噬菌体编码细菌 VF:(i)增强基因的移动性可能会导致细菌群体中更多的 VF 基因代表。然而,我们质疑为什么某些基因而不是其他基因可能受益于这种移动性。(ii)VF 基因和噬菌体基因之间的上位相互作用——增强噬菌体对细菌的 VF 利用——可以通过对表达 VF 的单个细菌进行选择来维持噬菌体基因。然而,这种机制足以维持噬菌体基因组的其余部分,还是在没有基因共同调节的情况下,即使在噬菌体和 VF 基因之间保持遗传连锁?(iii)噬菌体可以通过携带它们到同一环境中原本共生的细菌中,在疾病进展过程中放大 VF。然而,裂解噬菌体杀死细菌,因此需要假设细菌种群内的包容性适合度,以解释为了细菌的利益而保留噬菌体介导的 VF 放大。最后,(iv)噬菌体编码的 VF 可以增强噬菌体的达尔文适应性,特别是通过充当生态系统修饰剂。也就是说,VF 提供的营养可以通过增加密度或改善噬菌体易感细菌的生理学来增强噬菌体的生长。或者,VF 介导的打破宿主生物多细胞体内扩散抑制空间结构可以增加噬菌体向新细菌或环境的传播。这些噬菌体适应性增强机制在微生物异质环境中尤其适用,即在噬菌体有一定合理的潜力获得噬菌体易感细菌的环境中。