Suppr超能文献

噬菌体扫描器:一种用于噬菌体基因组和宏基因组特征注释的可重构机器学习框架。

PhageScanner: a reconfigurable machine learning framework for bacteriophage genomic and metagenomic feature annotation.

作者信息

Albin Dreycey, Ramsahoye Michelle, Kochavi Eitan, Alistar Mirela

机构信息

Department of Computer Science, University of Colorado at Boulder, Boulder, CO, United States.

ATLAS Institute, University of Colorado at Boulder, Boulder, CO, United States.

出版信息

Front Microbiol. 2024 Sep 17;15:1446097. doi: 10.3389/fmicb.2024.1446097. eCollection 2024.

Abstract

Bacteriophages are the most prolific organisms on Earth, yet many of their genomes and assemblies from metagenomic sources lack protein sequences with identified functions. While most bacteriophage proteins are structural proteins, categorized as Phage Virion Proteins (PVPs), a considerable number remain unclassified. Complicating matters further, traditional lab-based methods for PVP identification can be tedious. To expedite the process of identifying PVPs, machine-learning models are increasingly being employed. Existing tools have developed models for predicting PVPs from protein sequences as input. However, none of these efforts have built software allowing for both genomic and metagenomic data as input. In addition, there is currently no framework available for easily curating data and creating new types of machine learning models. In response, we introduce PhageScanner, an open-source platform that streamlines data collection for genomic and metagenomic datasets, model training and testing, and includes a prediction pipeline for annotating genomic and metagenomic data. PhageScanner also features a graphical user interface (GUI) for visualizing annotations on genomic and metagenomic data. We further introduce a BLAST-based classifier that outperforms ML-based models and an efficient Long Short-Term Memory (LSTM) classifier. We then showcase the capabilities of PhageScanner by predicting PVPs in six previously uncharacterized bacteriophage genomes. In addition, we create a new model that predicts phage-encoded toxins within bacteriophage genomes, thus displaying the utility of the framework.

摘要

噬菌体是地球上数量最多的生物体,但许多来自宏基因组来源的噬菌体基因组和装配体缺乏具有已确定功能的蛋白质序列。虽然大多数噬菌体蛋白质是结构蛋白,归类为噬菌体病毒体蛋白(PVP),但仍有相当数量的蛋白未分类。更复杂的是,传统的基于实验室的PVP鉴定方法可能很繁琐。为了加快PVP的鉴定过程,机器学习模型的使用越来越多。现有的工具已经开发出了根据蛋白质序列作为输入来预测PVP的模型。然而,这些努力都没有构建出允许将基因组数据和宏基因组数据作为输入的软件。此外,目前还没有一个框架可用于轻松整理数据和创建新型机器学习模型。作为回应,我们推出了PhageScanner,这是一个开源平台,可简化基因组和宏基因组数据集的数据收集、模型训练和测试,并包括一个用于注释基因组和宏基因组数据的预测管道。PhageScanner还具有一个图形用户界面(GUI),用于可视化基因组和宏基因组数据上的注释。我们还引入了一种基于BLAST的分类器,其性能优于基于机器学习的模型,以及一种高效的长短期记忆(LSTM)分类器。然后,我们通过预测六个以前未表征的噬菌体基因组中的PVP来展示PhageScanner的功能。此外,我们创建了一个新模型,用于预测噬菌体基因组中噬菌体编码的毒素,从而展示了该框架的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d990/11442244/59ab6b857a76/fmicb-15-1446097-g0009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验