Suppr超能文献

姿势控制中感觉再平衡的机制。

A mechanism for sensory re-weighting in postural control.

机构信息

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.

出版信息

Med Biol Eng Comput. 2009 Sep;47(9):921-9. doi: 10.1007/s11517-009-0477-5. Epub 2009 Mar 27.

Abstract

A key finding of human balance experiments has been that the integration of sensory information utilized for postural control appears to be dynamically regulated to adapt to changing environmental conditions and the available sensory information, a process referred to as "sensory re-weighting." We propose a postural control model that includes automatic sensory re-weighting. This model is an adaptation of a previously reported model of sensory feedback that included manual sensory re-weighting. The new model achieves sensory re-weighting that is physiologically plausible and readily implemented. Model simulations are compared to previously reported experimental results to demonstrate the automated sensory re-weighting strategy of the modified model. On the whole, the postural sway time series generated by the model with automatic sensory re-weighting show good agreement with experimental data, and are capable of producing patterns similar to those observed experimentally.

摘要

人体平衡实验的一个重要发现是,用于姿势控制的感觉信息整合似乎是动态调节的,以适应不断变化的环境条件和可用的感觉信息,这个过程被称为“感觉重新加权”。我们提出了一个包含自动感觉重新加权的姿势控制模型。这个模型是对以前报道的包含手动感觉重新加权的感觉反馈模型的改编。新模型实现了生理上合理且易于实施的感觉重新加权。通过将模型模拟与以前报道的实验结果进行比较,证明了改进模型的自动感觉重新加权策略。总的来说,具有自动感觉重新加权的模型生成的姿势摆动时间序列与实验数据吻合较好,并且能够产生与实验观察到的相似的模式。

相似文献

1
A mechanism for sensory re-weighting in postural control.
Med Biol Eng Comput. 2009 Sep;47(9):921-9. doi: 10.1007/s11517-009-0477-5. Epub 2009 Mar 27.
2
Dynamics of inter-modality re-weighting during human postural control.
Exp Brain Res. 2012 Nov;223(1):99-108. doi: 10.1007/s00221-012-3244-z. Epub 2012 Sep 11.
3
Augmenting sensory-motor conflict promotes adaptation of postural behaviors in a virtual environment.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1379-82. doi: 10.1109/IEMBS.2011.6090324.
4
Sensory integration for human balance control.
Handb Clin Neurol. 2018;159:27-42. doi: 10.1016/B978-0-444-63916-5.00002-1.
5
Comparison of human and humanoid robot control of upright stance.
J Physiol Paris. 2009 Sep-Dec;103(3-5):149-58. doi: 10.1016/j.jphysparis.2009.08.001. Epub 2009 Aug 7.
6
Body sway adaptation to addition but not withdrawal of stabilizing visual information is delayed by a concurrent cognitive task.
J Neurophysiol. 2017 Feb 1;117(2):777-785. doi: 10.1152/jn.00725.2016. Epub 2016 Nov 30.
7
Sensorimotor adaptation of whole-body postural control.
Neuroscience. 2017 Jul 25;356:217-228. doi: 10.1016/j.neuroscience.2017.05.029. Epub 2017 May 23.
8
Real-time visual feedback of COM and COP motion properties differentially modifies postural control structures.
Exp Brain Res. 2017 Jan;235(1):109-120. doi: 10.1007/s00221-016-4769-3. Epub 2016 Sep 19.
9
Multisensory control of human upright stance.
Exp Brain Res. 2006 May;171(2):231-50. doi: 10.1007/s00221-005-0256-y. Epub 2005 Nov 24.
10
Asymmetric adaptation with functional advantage in human sensorimotor control.
Exp Brain Res. 2008 Dec;191(4):453-63. doi: 10.1007/s00221-008-1539-x. Epub 2008 Aug 22.

引用本文的文献

1
Postural Balance in Italian Air Force Pilots: Development of Specific Normative Values.
Audiol Res. 2025 Jun 12;15(3):70. doi: 10.3390/audiolres15030070.
4
Methods for integrating postural control into biomechanical human simulations: a systematic review.
J Neuroeng Rehabil. 2023 Aug 21;20(1):111. doi: 10.1186/s12984-023-01235-3.
6
Older adults with slow sit to stand times show reduced temporal precision of audio-visual integration.
Exp Brain Res. 2023 Jun;241(6):1633-1642. doi: 10.1007/s00221-023-06628-3. Epub 2023 May 12.
7
Estimation of the visual contribution to standing balance using virtual reality.
Sci Rep. 2023 Feb 14;13(1):2594. doi: 10.1038/s41598-023-29713-7.
8
A gait-based paradigm to investigate central body representation in cervical dystonia patients.
Neurol Sci. 2023 Apr;44(4):1311-1318. doi: 10.1007/s10072-022-06548-0. Epub 2022 Dec 19.
9
Dynamic changes of brain networks during standing balance control under visual conflict.
Front Neurosci. 2022 Oct 5;16:1003996. doi: 10.3389/fnins.2022.1003996. eCollection 2022.

本文引用的文献

1
Stability of the human upright stance depending on the frequency of external disturbances.
Med Biol Eng Comput. 2008 Mar;46(3):213-21. doi: 10.1007/s11517-007-0269-8. Epub 2007 Oct 10.
2
The passive, human calf muscles in relation to standing: the non-linear decrease from short range to long range stiffness.
J Physiol. 2007 Oct 15;584(Pt 2):661-75. doi: 10.1113/jphysiol.2007.140046. Epub 2007 Sep 6.
3
Sensory reweighting with translational visual stimuli in young and elderly adults: the role of state-dependent noise.
Exp Brain Res. 2006 Oct;174(3):517-27. doi: 10.1007/s00221-006-0502-y. Epub 2006 May 23.
4
Stimulus-dependent changes in the vestibular contribution to human postural control.
J Neurophysiol. 2006 May;95(5):2733-50. doi: 10.1152/jn.00856.2004. Epub 2006 Feb 8.
5
Multisensory control of human upright stance.
Exp Brain Res. 2006 May;171(2):231-50. doi: 10.1007/s00221-005-0256-y. Epub 2005 Nov 24.
6
Sensory re-weighting in human postural control during moving-scene perturbations.
Exp Brain Res. 2005 Nov;167(2):260-7. doi: 10.1007/s00221-005-0053-7. Epub 2005 Nov 15.
7
Human standing posture control system depending on adopted strategies.
Med Biol Eng Comput. 2005 Jan;43(1):107-14. doi: 10.1007/BF02345130.
8
Comparing internal models of the dynamics of the visual environment.
Biol Cybern. 2005 Mar;92(3):147-63. doi: 10.1007/s00422-004-0535-x. Epub 2005 Feb 9.
9
Dynamic regulation of sensorimotor integration in human postural control.
J Neurophysiol. 2004 Jan;91(1):410-23. doi: 10.1152/jn.00516.2003. Epub 2003 Sep 17.
10
Simplifying the complexities of maintaining balance.
IEEE Eng Med Biol Mag. 2003 Mar-Apr;22(2):63-8. doi: 10.1109/memb.2003.1195698.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验