Arteaga Oriol, Canillas Adolf
FEMAN Group, Departament de Física Aplicada i Optica, Universitat de Barcelona, C/ Martí i Franquès 1, Barcelona 08030, Spain.
J Opt Soc Am A Opt Image Sci Vis. 2009 Apr;26(4):783-93. doi: 10.1364/josaa.26.000783.
We propose a new algorithm, the pseudopolar decomposition, to decompose a Jones or a Mueller-Jones matrix into a sequence of matrix factors: J congruent withJ(R)J(D)J(1C)J(2C) or M congruent withM(R)M(D)M(1C)M(2C). The matrices J(R)(M(R)) and J(D)(M(D)) parameterize, respectively, the retardation and dichroic properties of J(M) in a good approximation, while J(iC)(M(iC)) are correction factors that arise from the noncommutativity of the polarization properties. The exponential versions of the general Jones matrix are used to demonstrate the pseudopolar decomposition and to calculate each one of the matrix factors. The decomposition preserves all the polarization properties of the system on the factorized J(R)(M(R)) and J(D)(M(D)) matrix terms. The algorithm that calculates the pseudopolar decomposition for experimentally determined Mueller matrices is presented.
我们提出了一种新算法——伪极分解,用于将琼斯矩阵或穆勒 - 琼斯矩阵分解为一系列矩阵因子:(J) 等同于 (J(R)J(D)J(1C)J(2C)) 或 (M) 等同于 (M(R)M(D)M(1C)M(2C))。矩阵 (J(R)(M(R))) 和 (J(D)(M(D))) 分别很好地近似参数化了 (J(M)) 的延迟和二向色性特性,而 (J(iC)(M(iC))) 是由偏振特性的不可交换性产生的校正因子。使用一般琼斯矩阵的指数形式来演示伪极分解并计算每个矩阵因子。该分解在分解后的 (J(R)(M(R))) 和 (J(D)(M(D))) 矩阵项上保留了系统的所有偏振特性。还给出了针对实验确定的穆勒矩阵计算伪极分解的算法。