Valenzuela John R, Fessler Jeffrey A
University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122, USA.
J Opt Soc Am A Opt Image Sci Vis. 2009 Apr;26(4):962-8. doi: 10.1364/josaa.26.000962.
In the field of imaging polarimetry Stokes parameters are sought and must be inferred from noisy and blurred intensity measurements. Using a penalized-likelihood estimation framework we investigate reconstruction quality when estimating intensity images and then transforming to Stokes parameters, and when estimating Stokes parameters directly. We define our cost function for reconstruction by a weighted least-squares data fit term and a regularization penalty. We show that for quadratic regularization the estimators of Stokes and intensity images can be made equal by appropriate choice of regularization parameters. It is empirically shown that, when using edge preserving regularization, estimating the Stokes parameters directly leads to lower RMS error. Also, the addition of a cross channel regularization term further lowers the RMS error for both methods, especially in the case of low SNR.
在成像偏振测量领域,人们寻求斯托克斯参数,并且必须从有噪声和模糊的强度测量中推断出来。我们使用惩罚似然估计框架,研究在估计强度图像然后转换为斯托克斯参数时以及直接估计斯托克斯参数时的重建质量。我们通过加权最小二乘数据拟合项和正则化惩罚来定义重建的成本函数。我们表明,对于二次正则化,通过适当选择正则化参数,可以使斯托克斯图像和强度图像的估计器相等。经验表明,当使用保边正则化时,直接估计斯托克斯参数会导致更低的均方根误差。此外,添加跨通道正则化项会进一步降低两种方法的均方根误差,尤其是在低信噪比的情况下。