Li Min, Scott Devon E, Shandas Robin, Stenmark Kurt R, Tan Wei
Department of Pediatrics-Cardiology, The Children's Hospital, University of Colorado at Denver, Aurora, CO 80045, USA.
Ann Biomed Eng. 2009 Jun;37(6):1082-92. doi: 10.1007/s10439-009-9684-3. Epub 2009 Apr 2.
Arterial stiffening or reduced compliance of proximal pulmonary vessels has been shown to be an important predictor of outcomes in patients with pulmonary hypertension. Though current evidence indicates that arterial stiffening modulates flow pulsatility in downstream vessels and is likely related to microvascular damage in organs without extensive distributing arteries, the cellular mechanisms underlying this relationship in the pulmonary circulation are unexplored. Thus, this study was designed to examine the responses of the microvascular pulmonary endothelium to changes in flow pulsatility.
A flow system was developed to reproduce arterial-like pulse flow waves with the capability of modulating flow pulsatility through regulation of upstream compliance. Pulmonary microvascular endothelial cells (PMVECs) were exposed to steady flow and pulse flow waves of varied pulsatility with varied hemodynamic energy (low: pulsatility index or PI = 1.0; medium: PI = 1.7; high: PI = 2.6) at flow frequency of 1 or 2 Hz for different durations (1 and 6 h). The mean flow rates in all the conditions were kept the same with shear stress at 14 dynes/cm(2). Gene expression was evaluated by analyzing mRNA levels of adhesion molecules (ICAM-1, E-selectin), chemokine (MCP-1) and growth factor/receptor (VEGF, Flt-1) in PMVECs. Functional changes were observed with monocyte adhesion assay.
Increased upstream pulmonary arterial stiffness increases flow pulsatility in distal arteries and induces inflammatory gene expression, leukocyte adhesion and cell proliferation in the downstream PMVECs.
肺动脉近端血管的动脉僵硬度增加或顺应性降低已被证明是肺动脉高压患者预后的重要预测指标。尽管目前的证据表明动脉僵硬度调节下游血管的血流搏动性,并且可能与没有广泛分布动脉的器官中的微血管损伤有关,但肺循环中这种关系的细胞机制尚未得到探索。因此,本研究旨在研究肺微血管内皮对血流搏动性变化的反应。
开发了一种流动系统,以通过调节上游顺应性来再现类似动脉的脉搏血流波,从而调节血流搏动性。将肺微血管内皮细胞(PMVECs)暴露于不同搏动性、不同血流动力学能量(低:搏动指数或PI = 1.0;中:PI = 1.7;高:PI = 2.6)的稳定血流和脉搏血流波中,血流频率为1或2 Hz,持续不同时间(1和6小时)。所有条件下的平均流速保持相同,剪切应力为14达因/平方厘米。通过分析PMVECs中粘附分子(ICAM-1、E-选择素)、趋化因子(MCP-1)和生长因子/受体(VEGF、Flt-1)的mRNA水平来评估基因表达。通过单核细胞粘附试验观察功能变化。
1)与稳定血流或低搏动性血流相比,血流搏动性增加1小时可导致ICAM-1、E-选择素和MCP-1的mRNA水平显著增加。2)持续的高搏动性血流灌注可导致ICAM、E-选择素、MCP-1、VEGF及其受体Flt-1表达增加。3)血流搏动性对PMVECs的影响具有频率依赖性,在2 Hz时反应更大,并可能与血流动力学能量水平有关。4)2 Hz时具有高血流搏动性的脉搏血流波可诱导白细胞粘附并募集到PMVECs。
上游肺动脉僵硬度增加会增加远端动脉的血流搏动性,并诱导下游PMVECs中的炎症基因表达、白细胞粘附和细胞增殖。