Katz Yarden, Fontana Walter
Digital Studies Institute, University of Michigan, Ann Arbor, MI 48109, USA.
Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
Entropy (Basel). 2022 Apr 29;24(5):629. doi: 10.3390/e24050629.
Probabilistic inference-the process of estimating the values of unobserved variables in probabilistic models-has been used to describe various cognitive phenomena related to learning and memory. While the study of biological realizations of inference has focused on animal nervous systems, single-celled organisms also show complex and potentially "predictive" behaviors in changing environments. Yet, it is unclear how the biochemical machinery found in cells might perform inference. Here, we show how inference in a simple Markov model can be approximately realized, in real-time, using polymerizing biochemical circuits. Our approach relies on assembling linear polymers that record the history of environmental changes, where the polymerization process produces molecular complexes that reflect posterior probabilities. We discuss the implications of realizing inference using biochemistry, and the potential of polymerization as a form of biological information-processing.
概率推理——在概率模型中估计未观察变量值的过程——已被用于描述与学习和记忆相关的各种认知现象。虽然对推理的生物学实现的研究主要集中在动物神经系统上,但单细胞生物在不断变化的环境中也表现出复杂且可能具有“预测性”的行为。然而,目前尚不清楚细胞中的生化机制是如何进行推理的。在这里,我们展示了如何使用聚合生化电路实时近似实现简单马尔可夫模型中的推理。我们的方法依赖于组装记录环境变化历史的线性聚合物,其中聚合过程产生反映后验概率的分子复合物。我们讨论了利用生物化学实现推理的意义,以及聚合作为一种生物信息处理形式的潜力。