Talley Kemper, Ng Carmen, Shoppell Michael, Kundrotas Petras, Alexov Emil
Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634, USA.
PMC Biophys. 2008 Nov 5;1(1):2. doi: 10.1186/1757-5036-1-2.
Calculations of electrostatic properties of protein-protein complexes are usually done within framework of a model with a certain set of parameters. In this paper we present a comprehensive statistical analysis of the sensitivity of the electrostatic component of binding free energy (DeltaDeltaGel) with respect with different force fields (Charmm, Amber, and OPLS), different values of the internal dielectric constant, and different presentations of molecular surface (different values of the probe radius). The study was done using the largest so far set of entries comprising 260 hetero and 2148 homo protein-protein complexes extracted from a previously developed database of protein complexes (ProtCom). To test the sensitivity of the energy calculations with respect to the structural details, all structures were energy minimized with corresponding force field, and the energies were recalculated. The results indicate that the absolute value of the electrostatic component of the binding free energy (DeltaDeltaGel) is very sensitive to the force field parameters, the minimization procedure, the values of the internal dielectric constant, and the probe radius. Nevertheless our results indicate that certain trends in DeltaDeltaGel behavior are much less sensitive to the calculation parameters. For instance, the fraction of the homo-complexes, for which the electrostatics was found to oppose binding, is 80% regardless of the force fields and parameters used. For the hetero-complexes, however, the percentage of the cases for which electrostatics opposed binding varied from 43% to 85%, depending on the protocol and parameters employed. A significant correlation was found between the effects caused by raising the internal dielectric constant and decreasing the probe radius. Correlations were also found among the results obtained with different force fields. However, despite of the correlations found, the absolute DeltaDeltaGel calculated with different force field parameters could differ more than tens of kcal/mol in some cases. Set of rules of obtaining confident predictions of absolute DeltaDeltaGel and DeltaDeltaGel sign are provided in the conclusion section.PACS codes: 87.15.A-, 87.15. km.
蛋白质 - 蛋白质复合物静电性质的计算通常是在具有特定参数集的模型框架内进行的。在本文中,我们针对不同的力场(CHARMM、Amber和OPLS)、内部介电常数的不同值以及分子表面的不同表示形式(探针半径的不同值),对结合自由能的静电成分(ΔΔGel)的敏感性进行了全面的统计分析。该研究使用了迄今为止最大的一组数据条目,这些条目包括从先前开发的蛋白质复合物数据库(ProtCom)中提取的260个异源和2148个同源蛋白质 - 蛋白质复合物。为了测试能量计算对结构细节的敏感性,所有结构都使用相应的力场进行了能量最小化,并重新计算了能量。结果表明,结合自由能的静电成分(ΔΔGel)的绝对值对力场参数、最小化过程、内部介电常数的值和探针半径非常敏感。然而,我们的结果表明,ΔΔGel行为的某些趋势对计算参数的敏感性要小得多。例如,无论使用何种力场和参数,发现静电作用阻碍结合的同源复合物的比例为80%。然而,对于异源复合物,静电作用阻碍结合的情况所占百分比在43%至85%之间变化,这取决于所采用的方案和参数。发现提高内部介电常数和减小探针半径所产生的影响之间存在显著相关性。在不同力场获得的结果之间也发现了相关性。然而,尽管发现了相关性,但在某些情况下,使用不同力场参数计算得到的绝对ΔΔGel可能相差超过数十千卡/摩尔。结论部分提供了获得绝对ΔΔGel和ΔΔGel符号的可靠预测的一组规则。物理和化学主题分类代码:87.15.A -,87.15. km。