Jülicher F, Prost J
Max-Planck Institute for the Physics of Complex Systems, Nöthnitzerstr. 38, 01187, Dresden, Germany.
Eur Phys J E Soft Matter. 2009 May;29(1):27-36. doi: 10.1140/epje/i2008-10446-8. Epub 2009 Apr 8.
We discuss the motion of colloidal particles relative to a two-component fluid consisting of solvent and solute. Particle motion can result from i) net body forces on the particle due to external fields such as gravity; ii) slip velocities on the particle surface due to surface dissipative phenomena. The perturbations of the hydrodynamic flow field exhibit characteristic differences in cases i) and ii) which reflect different patterns of momentum flux corresponding to the existence of net forces, force dipoles or force quadrupoles. In the absence of external fields, gradients of concentration or pressure do not generate net forces on a colloidal particle. Such gradients can nevertheless induce relative motion between particle and fluid. We present a generic description of surface dissipative phenomena based on the linear response of surface fluxes driven by conjugate surface forces. In this framework we discuss different transport scenarios including self-propulsion via surface slip that is induced by active processes on the particle surface. We clarify the nature of force balances in such situations.
我们讨论了胶体粒子相对于由溶剂和溶质组成的双组分流体的运动。粒子运动可能源于:i)由于重力等外部场作用于粒子上的净体力;ii)由于表面耗散现象导致粒子表面的滑移速度。在情况i)和ii)中,流体动力学流场的扰动表现出特征差异,这反映了与净力、力偶或力四极子的存在相对应的不同动量通量模式。在没有外部场的情况下,浓度或压力梯度不会在胶体粒子上产生净力。然而,这种梯度可以诱导粒子与流体之间的相对运动。我们基于共轭表面力驱动的表面通量的线性响应,给出了表面耗散现象的一般描述。在此框架内,我们讨论了不同的输运情形,包括通过粒子表面活性过程诱导的表面滑移实现的自推进。我们阐明了这种情况下力平衡的本质。