Winrow Christopher J, Williams Deanna L, Kasarskis Andrew, Millstein Joshua, Laposky Aaron D, Yang He S, Mrazek Karrie, Zhou Lili, Owens Joseph R, Radzicki Daniel, Preuss Fabian, Schadt Eric E, Shimomura Kazuhiro, Vitaterna Martha H, Zhang Chunsheng, Koblan Kenneth S, Renger John J, Turek Fred W
Department of Depression and Circadian Rhythms, Merck Research Laboratories, West Point, Pennsylvania, USA.
PLoS One. 2009;4(4):e5161. doi: 10.1371/journal.pone.0005161. Epub 2009 Apr 10.
Despite decades of research in defining sleep-wake properties in mammals, little is known about the nature or identity of genes that regulate sleep, a fundamental behaviour that in humans occupies about one-third of the entire lifespan. While genome-wide association studies in humans and quantitative trait loci (QTL) analyses in mice have identified candidate genes for an increasing number of complex traits and genetic diseases, the resources and time-consuming process necessary for obtaining detailed quantitative data have made sleep seemingly intractable to similar large-scale genomic approaches. Here we describe analysis of 20 sleep-wake traits from 269 mice from a genetically segregating population that reveals 52 significant QTL representing a minimum of 20 genomic loci. While many (28) QTL affected a particular sleep-wake trait (e.g., amount of wake) across the full 24-hr day, other loci only affected a trait in the light or dark period while some loci had opposite effects on the trait during the light vs. dark. Analysis of a dataset for multiple sleep-wake traits led to previously undetected interactions (including the differential genetic control of number and duration of REM bouts), as well as possible shared genetic regulatory mechanisms for seemingly different unrelated sleep-wake traits (e.g., number of arousals and REM latency). Construction of a Bayesian network for sleep-wake traits and loci led to the identification of sub-networks of linkage not detectable in smaller data sets or limited single-trait analyses. For example, the network analyses revealed a novel chain of causal relationships between the chromosome 17@29cM QTL, total amount of wake, and duration of wake bouts in both light and dark periods that implies a mechanism whereby overall sleep need, mediated by this locus, in turn determines the length of each wake bout. Taken together, the present results reveal a complex genetic landscape underlying multiple sleep-wake traits and emphasize the need for a systems biology approach for elucidating the full extent of the genetic regulatory mechanisms of this complex and universal behavior.
尽管在确定哺乳动物睡眠-觉醒特性方面进行了数十年的研究,但对于调节睡眠的基因的本质或身份却知之甚少,睡眠是一种基本行为,在人类中占据了整个生命周期的约三分之一。虽然人类的全基因组关联研究和小鼠的数量性状基因座(QTL)分析已经确定了越来越多复杂性状和遗传疾病的候选基因,但获取详细定量数据所需的资源和耗时过程使得睡眠似乎难以用类似的大规模基因组方法进行研究。在这里,我们描述了对来自一个遗传分离群体的269只小鼠的20种睡眠-觉醒性状的分析,该分析揭示了52个显著的QTL,代表至少20个基因组位点。虽然许多(28个)QTL在整个24小时内影响特定的睡眠-觉醒性状(例如,觉醒量),但其他位点仅在光照或黑暗期影响一个性状,而一些位点在光照与黑暗期对该性状有相反的影响。对多个睡眠-觉醒性状数据集的分析导致了以前未检测到的相互作用(包括快速眼动睡眠发作次数和持续时间的差异遗传控制),以及看似不同的不相关睡眠-觉醒性状(例如,觉醒次数和快速眼动睡眠潜伏期)可能共享的遗传调控机制。构建睡眠-觉醒性状和位点的贝叶斯网络导致识别出在较小数据集或有限的单性状分析中无法检测到的连锁子网。例如,网络分析揭示了17号染色体@29cM QTL、总觉醒量以及光照和黑暗期觉醒发作持续时间之间的一种新的因果关系链,这意味着一种机制,即由该位点介导的总体睡眠需求反过来决定每次觉醒发作的长度。综上所述,目前的结果揭示了多种睡眠-觉醒性状背后复杂的遗传格局,并强调需要一种系统生物学方法来阐明这种复杂而普遍行为的遗传调控机制的全貌。