Suppr超能文献

SegWay:用于实验性脑电图记录中无监督睡眠分段的简单框架。

SegWay: A simple framework for unsupervised sleep segmentation in experimental EEG recordings.

作者信息

Yaghouby Farid, Sunderam Sridhar

机构信息

Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA.

出版信息

MethodsX. 2016 Feb 21;3:144-55. doi: 10.1016/j.mex.2016.02.003. eCollection 2016.

Abstract

Sleep analysis in animal models typically involves recording an electroencephalogram (EEG) and electromyogram (EMG) and scoring vigilance state in brief epochs of data as Wake, REM (rapid eye movement sleep) or NREM (non-REM) either manually or using a computer algorithm. Computerized methods usually estimate features from each epoch like the spectral power associated with distinctive cortical rhythms and dissect the feature space into regions associated with different states by applying thresholds, or by using supervised/unsupervised statistical classifiers; but there are some factors to consider when using them:•Most classifiers require scored sample data, elaborate heuristics or computational steps not easily reproduced by the average sleep researcher, who is the targeted end user.•Even when prediction is reasonably accurate, small errors can lead to large discrepancies in estimates of important sleep metrics such as the number of bouts or their duration.•As we show here, besides partitioning the feature space by vigilance state, modeling transitions between the states can give more accurate scores and metrics. An unsupervised sleep segmentation framework, "SegWay", is demonstrated by applying the algorithm step-by-step to unlabeled EEG recordings in mice. The accuracy of sleep scoring and estimation of sleep metrics is validated against manual scores.

摘要

动物模型中的睡眠分析通常包括记录脑电图(EEG)和肌电图(EMG),并在简短的数据片段中手动或使用计算机算法将警觉状态划分为清醒、快速眼动睡眠(REM)或非快速眼动睡眠(NREM)。计算机化方法通常从每个片段中估计特征,如与独特皮层节律相关的频谱功率,并通过应用阈值或使用监督/无监督统计分类器将特征空间划分为与不同状态相关的区域;但使用这些方法时需要考虑一些因素:

  • 大多数分类器需要有评分的样本数据、复杂的启发式方法或计算步骤,普通睡眠研究人员(目标最终用户)不容易重现这些步骤。

  • 即使预测相当准确,小误差也可能导致重要睡眠指标(如发作次数或发作持续时间)估计的巨大差异。

  • 正如我们在此所示,除了按警觉状态划分特征空间外,对状态之间的转换进行建模可以给出更准确的评分和指标。通过将算法逐步应用于小鼠未标记的脑电图记录,展示了一个无监督睡眠分割框架“SegWay”。睡眠评分的准确性和睡眠指标的估计通过与人工评分进行验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ee9/4792881/883c742d09c9/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验