Suppr超能文献

基于先进智能算法模型的CO-盐水界面张力估算:在碳盐水层封存中的应用

Estimation of CO-Brine Interfacial Tension Based on an Advanced Intelligent Algorithm Model: Application for Carbon Saline Aquifer Sequestration.

作者信息

Mutailipu Meiheriayi, Yang Yande, Zuo Kaishuai, Xue Qingnan, Wang Qi, Xue Fusheng, Wang Gang

机构信息

Engineering Research Center of Northwest Energy Carbon Neutrality, Ministry of Education, Xinjiang University, Urumqi 830017, China.

School of Electrical Engineering, Xinjiang University, Urumqi 830017, China.

出版信息

ACS Omega. 2024 Aug 19;9(35):37265-37277. doi: 10.1021/acsomega.4c04888. eCollection 2024 Sep 3.

Abstract

The emission reduction of the main greenhouse gas, CO, can be achieved via carbon capture, utilization, and storage (CCUS) technology. Geological carbon storage (GCS) projects, especially CO storage in deep saline aquifers, are the most promising methods for meeting the net zero emission goal. The safety and efficiency of CO saline aquifer storage are primarily controlled by structural and capillary trapping, which are significantly influenced by the interactions between fluid and solid phases in terms of the interfacial tension (IFT) between the injected CO and brine at the reservoir site. In this study, a model based on the random forest (RF) model and the Bayesian optimization (BO) algorithm was developed to estimate the IFT between the pure and impure gas-brine binary systems for application to CO saline aquifer sequestration. Then three heuristic algorithms were applied to validate the accuracy and efficiency of the established model. The results of this study indicate that among the four mixed models, the Bayesian optimized random forest model fits the experimental data with the smallest root-mean-square error (RMSE = 1.7705) and mean absolute percentage error (MAPE = 2.0687%) and a high coefficient of determination (R = 0.9729). Then the IFT values predicted via this model were used as an input parameter to estimate the CO sequestration capacity of saline aquifers at different depths in the Tarim Basin of Xinjiang, China. The burial depth had a limited influence on the CO storage capacity.

摘要

主要温室气体一氧化碳(CO)的减排可通过碳捕获、利用与封存(CCUS)技术来实现。地质碳封存(GCS)项目,特别是在深层盐水层中封存CO,是实现净零排放目标最具前景的方法。CO在盐水层中储存的安全性和效率主要受构造圈闭和毛细管圈闭控制,而这在很大程度上受储层中注入的CO与盐水之间的界面张力(IFT)影响,具体表现为流体与固相之间的相互作用。在本研究中,开发了一种基于随机森林(RF)模型和贝叶斯优化(BO)算法的模型,用于估算纯气体 - 盐水二元体系和不纯气体 - 盐水二元体系之间的IFT,以应用于CO盐水层封存。然后应用三种启发式算法来验证所建立模型的准确性和效率。本研究结果表明,在四种混合模型中,贝叶斯优化随机森林模型与实验数据拟合效果最佳,其均方根误差最小(RMSE = 1.7705),平均绝对百分比误差最小(MAPE = 2.0687%),决定系数较高(R = 0.9729)。然后,将通过该模型预测的IFT值作为输入参数,来估算中国新疆塔里木盆地不同深度盐水层的CO封存能力。埋藏深度对CO储存能力的影响有限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cf3/11375710/d5b7bdfe4da8/ao4c04888_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验