Jorrín-Novo Jesús V, Maldonado Ana M, Echevarría-Zomeño Sira, Valledor Luis, Castillejo Mari A, Curto Miguel, Valero José, Sghaier Besma, Donoso Gabriel, Redondo Inmaculada
Dept of Biochemistry and Molecular Biology, Agricultural and Plant Biochemistry and Proteomics Research Group, University of Córdoba, Córdoba, Spain
J Proteomics. 2009 Apr 13;72(3):285-314. doi: 10.1016/j.jprot.2009.01.026.
This review is the continuation of three previously published articles [Jorrin JV, Maldonado AM, Castillejo MA. Plant proteome analysis: a 2006 update. Proteomics 2007; 7: 2947-2962; Rossignol M, Peltier JB, Mock HP, Matros A, Maldonado AM, Jorrin JV. Plant proteome analysis: a 2004-2006 update. Proteomics 2006; 6: 5529-5548; Canovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock HP, Rossignol M. Plant proteome analysis. Proteomics 2004; 4: 285-298] and aims to update the contribution of Proteomics to plant research between 2007 and September 2008 by reviewing most of the papers, which number approximately 250, that appeared in the Plant Proteomics field during that period. Most of the papers published deal with the proteome of Arabidopsis thaliana and rice (Oryza sativa), and focus on profiling organs, tissues, cells or subcellular proteomes, and studying developmental processes and responses to biotic and abiotic stresses using a differential expression strategy. Although the platform based on 2-DE is still the most commonly used, the use of gel-free and second-generation Quantitative Proteomic techniques has increased. Proteomic data are beginning to be validated using complementary -omics or classical biochemical or cellular biology techniques. In addition, appropriate experimental design and statistical analysis are being carried out in accordance with the required Minimal Information about a Proteomic Experiment (MIAPE) standards. As a result, the coverage of the plant cell proteome and the plant biology knowledge is increasing. Compared to human and yeast systems, however, plant biology research has yet to exploit fully the potential of proteomics, in particular its applications to PTMs and Interactomics.
本综述是之前发表的三篇文章的延续[乔林·J·V、马尔多纳多·A·M、卡斯蒂列霍·M·A。植物蛋白质组分析:2006年更新。蛋白质组学2007;7:2947 - 2962;罗西尼奥尔·M、佩尔蒂埃·J·B、莫克·H·P、马特罗斯·A、马尔多纳多·A·M、乔林·J·V。植物蛋白质组分析:2004 - 2006年更新。蛋白质组学2006;6:5529 - 5548;卡诺瓦斯·F·M、迪马斯 - 高多特·E、雷科贝·G、乔林·J、莫克·H·P、罗西尼奥尔·M。植物蛋白质组分析。蛋白质组学2004;4:285 - 298],旨在通过回顾2007年至2008年9月期间植物蛋白质组学领域出现的约250篇论文,更新蛋白质组学对植物研究的贡献。发表的大多数论文涉及拟南芥和水稻(稻属)的蛋白质组,重点是分析器官、组织、细胞或亚细胞蛋白质组,并使用差异表达策略研究发育过程以及对生物和非生物胁迫的反应。尽管基于二维电泳的平台仍然是最常用的,但无凝胶和第二代定量蛋白质组学技术的使用有所增加。蛋白质组学数据开始使用互补的组学或经典生化或细胞生物学技术进行验证。此外,正在根据所需的蛋白质组学实验最小信息(MIAPE)标准进行适当的实验设计和统计分析。因此,植物细胞蛋白质组的覆盖范围和植物生物学知识正在增加。然而,与人类和酵母系统相比,植物生物学研究尚未充分发挥蛋白质组学的潜力,特别是其在蛋白质翻译后修饰和相互作用组学方面的应用。