Suppr超能文献

从嗅球到更高层次的脑中枢:斑马鱼次级嗅觉通路的基因可视化

From the olfactory bulb to higher brain centers: genetic visualization of secondary olfactory pathways in zebrafish.

作者信息

Miyasaka Nobuhiko, Morimoto Kozo, Tsubokawa Tatsuya, Higashijima Shin-ichi, Okamoto Hitoshi, Yoshihara Yoshihiro

机构信息

Laboratories for Neurobiology of Synapse, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.

出版信息

J Neurosci. 2009 Apr 15;29(15):4756-67. doi: 10.1523/JNEUROSCI.0118-09.2009.

Abstract

In the vertebrate olfactory system, odor information is represented as a topographic map in the olfactory bulb (OB). However, it remains unknown how this odor map is transferred from the OB to higher olfactory centers. Using genetic labeling techniques in zebrafish, we found that the OB output neurons, mitral cells (MCs), are heterogeneous with respect to transgene expression profiles and spatial distributions. Tracing MC axons at single-cell resolution revealed that (1) individual MCs send axons to multiple target regions in the forebrain; (2) MCs innervating the same glomerulus do not necessarily display the same axon trajectory; (3) MCs innervating distinct glomerular clusters tend to project axons to different, but partly overlapping, target regions; (4) MCs innervating the medial glomerular cluster directly and asymmetrically send axons to the right habenula. We propose that the topographic odor map in the OB is not maintained intact, but reorganized in higher olfactory centers. Moreover, our finding of asymmetric bulbo-habenular projection renders the olfactory system an attractive model for the studies of brain asymmetry and lateralized behaviors.

摘要

在脊椎动物嗅觉系统中,气味信息在嗅球(OB)中以地形图的形式呈现。然而,这种气味图谱是如何从嗅球传递到更高嗅觉中枢的仍不清楚。利用斑马鱼中的基因标记技术,我们发现嗅球输出神经元—— mitral细胞(MCs)在转基因表达谱和空间分布方面是异质的。以单细胞分辨率追踪MC轴突发现:(1)单个MC将轴突发送到前脑的多个目标区域;(2)支配同一肾小球的MC不一定显示相同的轴突轨迹;(3)支配不同肾小球簇的MC倾向于将轴突投射到不同但部分重叠的目标区域;(4)直接且不对称地支配内侧肾小球簇的MC将轴突发送到右侧缰核。我们提出,嗅球中的地形图气味图谱并非完整保留,而是在更高嗅觉中枢中重新组织。此外,我们发现的不对称嗅球-缰核投射使嗅觉系统成为研究大脑不对称和偏侧行为的一个有吸引力的模型。

相似文献

2
Aversive cues fail to activate fos expression in the asymmetric olfactory-habenula pathway of zebrafish.
Front Neural Circuits. 2013 May 21;7:98. doi: 10.3389/fncir.2013.00098. eCollection 2013.
4
Robos and slits control the pathfinding and targeting of mouse olfactory sensory axons.
J Neurosci. 2008 Apr 16;28(16):4244-9. doi: 10.1523/JNEUROSCI.5671-07.2008.
5
Olfactory sensory axons target specific protoglomeruli in the olfactory bulb of zebrafish.
Neural Dev. 2017 Oct 11;12(1):18. doi: 10.1186/s13064-017-0095-0.
7
Functional development of the olfactory system in zebrafish.
Mech Dev. 2013 Jun-Aug;130(6-8):336-46. doi: 10.1016/j.mod.2012.09.001. Epub 2012 Sep 23.
8
Anosmin-1a is required for fasciculation and terminal targeting of olfactory sensory neuron axons in the zebrafish olfactory system.
Mol Cell Endocrinol. 2009 Nov 27;312(1-2):53-60. doi: 10.1016/j.mce.2009.04.017. Epub 2009 May 21.
9
Olfactory axon pathfinding: who is the pied piper?
Neuron. 2002 Aug 15;35(4):599-600. doi: 10.1016/s0896-6273(02)00831-0.
10
Role of IGF signaling in olfactory sensory map formation and axon guidance.
Neuron. 2008 Mar 27;57(6):847-57. doi: 10.1016/j.neuron.2008.01.027.

引用本文的文献

2
Behavioral, Endocrine, and Neuronal Responses to Odors in Lampreys.
Animals (Basel). 2025 Jul 8;15(14):2012. doi: 10.3390/ani15142012.
3
Olfactory Dysfunction in a Novel Model of Prodromal Parkinson's Disease in Adult Zebrafish.
Int J Mol Sci. 2025 May 8;26(10):4474. doi: 10.3390/ijms26104474.
4
Intranasal delivery of drugs to the central nervous system of adult zebrafish.
Lab Anim (NY). 2025 May;54(5):126-132. doi: 10.1038/s41684-025-01545-0. Epub 2025 Apr 30.
6
Swimming through asymmetry: zebrafish as a model for brain and behavior lateralization.
Front Behav Neurosci. 2025 Jan 20;19:1527572. doi: 10.3389/fnbeh.2025.1527572. eCollection 2025.
7
Parental thermal conditions affect the brain activity response to alarm cue in larval zebrafish.
PeerJ. 2024 Oct 10;12:e18241. doi: 10.7717/peerj.18241. eCollection 2024.
8
Does a Vertebrate Morphotype of Pallial Subdivisions Really Exist?
Brain Behav Evol. 2024;99(4):230-247. doi: 10.1159/000537746. Epub 2024 Jul 16.
9
Ciliogenesis defects after neurulation impact brain development and neuronal activity in larval zebrafish.
iScience. 2024 May 22;27(6):110078. doi: 10.1016/j.isci.2024.110078. eCollection 2024 Jun 21.
10
Genetically defined nucleus incertus neurons differ in connectivity and function.
Elife. 2024 May 31;12:RP89516. doi: 10.7554/eLife.89516.

本文引用的文献

1
Brain asymmetry is encoded at the level of axon terminal morphology.
Neural Dev. 2008 Mar 31;3:9. doi: 10.1186/1749-8104-3-9.
2
The zebrafish as a model for behavioral studies.
Zebrafish. 2006;3(2):227-34. doi: 10.1089/zeb.2006.3.227.
3
Innate versus learned odour processing in the mouse olfactory bulb.
Nature. 2007 Nov 22;450(7169):503-8. doi: 10.1038/nature06281. Epub 2007 Nov 7.
4
A novel olfactory receptor gene family in teleost fish.
Genome Res. 2007 Oct;17(10):1448-57. doi: 10.1101/gr.6553207. Epub 2007 Aug 23.
6
A map of olfactory representation in the Drosophila mushroom body.
Cell. 2007 Mar 23;128(6):1205-17. doi: 10.1016/j.cell.2007.03.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验