Zheng Ying, Mayhew John
Centre for Signal Processing in Neuro-imaging and Systems Neuroscience, Department of Psychology, University of Sheffield, Sheffield, UK.
Neuroimage. 2009 Oct 1;47(4):1371-80. doi: 10.1016/j.neuroimage.2009.04.022. Epub 2009 Apr 14.
The difference between the rate of change of cerebral blood volume (CBV) and cerebral blood flow (CBF) following stimulation is thought to be due to circumferential stress relaxation in veins (Mandeville, J.B., Marota, J.J.A., Ayata, C., Zaharchuk, G., Moskowitz, M.A., Rosen, B.R., Weisskoff, R.M., 1999. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J. Cereb. Blood Flow Metab. 19, 679-689). In this paper we explore the visco-elastic properties of blood vessels, and present a dynamic model relating changes in CBF to changes in CBV. We refer to this model as the visco-elastic windkessel (VW) model. A novel feature of this model is that the parameter characterising the pressure-volume relationship of blood vessels is treated as a state variable dependent on the rate of change of CBV, producing hysteresis in the pressure-volume space during vessel dilation and contraction. The VW model is nonlinear time-invariant, and is able to predict the observed differences between the time series of CBV and that of CBF measurements following changes in neural activity. Like the windkessel model derived by Mandeville, J.B., Marota, J.J.A., Ayata, C., Zaharchuk, G., Moskowitz, M.A., Rosen, B.R., Weisskoff, R.M., 1999. Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J. Cereb. Blood Flow Metab. 19, 679-689, the VW model is primarily a model of haemodynamic changes in the venous compartment. The VW model is demonstrated to have the following characteristics typical of visco-elastic materials: (1) hysteresis, (2) creep, and (3) stress relaxation, hence it provides a unified model of the visco-elastic properties of the vasculature. The model will not only contribute to the interpretation of the Blood Oxygen Level Dependent (BOLD) signals from functional Magnetic Resonance Imaging (fMRI) experiments, but also find applications in the study and modelling of the brain vasculature and the haemodynamics of circulatory and cardiovascular systems.
刺激后脑血容量(CBV)变化率与脑血流量(CBF)变化率之间的差异被认为是由于静脉中的周向应力松弛(曼德维尔,J.B.,马罗塔,J.J.A.,阿亚塔,C.,扎哈尔丘克,G.,莫斯科维茨,M.A.,罗森,B.R.,魏斯科夫,R.M.,1999年。脑血管后小动脉弹性腔室具有延迟顺应性的证据。《脑血流与代谢杂志》19,679 - 689)。在本文中,我们探讨了血管的粘弹性特性,并提出了一个将CBF变化与CBV变化相关联的动态模型。我们将这个模型称为粘弹性弹性腔室(VW)模型。该模型的一个新颖之处在于,表征血管压力 - 容积关系的参数被视为一个依赖于CBV变化率的状态变量,在血管扩张和收缩过程中在压力 - 容积空间中产生滞后现象。VW模型是非线性时不变的,并且能够预测神经活动变化后CBV时间序列与CBF测量时间序列之间观察到的差异。与曼德维尔,J.B.,马罗塔,J.J.A.,阿亚塔,C.,扎哈尔丘克,G.,莫斯科维茨,M.A.,罗森,B.R.,魏斯科夫,R.M.在1999年推导的弹性腔室模型一样(《脑血流与代谢杂志》19,679 - 689),VW模型主要是静脉腔室血流动力学变化的模型。VW模型被证明具有以下粘弹性材料典型的特性:(1)滞后现象,(2)蠕变,以及(3)应力松弛,因此它提供了一个血管系统粘弹性特性的统一模型。该模型不仅将有助于解释来自功能磁共振成像(fMRI)实验的血氧水平依赖(BOLD)信号,还将在脑脉管系统以及循环和心血管系统的血流动力学的研究和建模中找到应用。