KCNQ1与KCNE1之间的动态伙伴关系以及KCNE2对心脏IKs电流幅度的影响。
Dynamic partnership between KCNQ1 and KCNE1 and influence on cardiac IKs current amplitude by KCNE2.
作者信息
Jiang Min, Xu Xulin, Wang Yuhong, Toyoda Futoshi, Liu Xian-Sheng, Zhang Mei, Robinson Richard B, Tseng Gea-Ny
机构信息
From the Department of Physiology & Biophysics, Virginia Commonwealth University, Richmond, Virginia 23298.
Department of Physiology, Shiga University of Medical Science, Shiga 520-2192, Japan.
出版信息
J Biol Chem. 2009 Jun 12;284(24):16452-16462. doi: 10.1074/jbc.M808262200. Epub 2009 Apr 16.
Cardiac slow delayed rectifier (IKs) channel is composed of KCNQ1 (pore-forming) and KCNE1 (auxiliary) subunits. Although KCNE1 is an obligate IKs component that confers the uniquely slow gating kinetics, KCNE2 is also expressed in human heart. In vitro experiments suggest that KCNE2 can associate with the KCNQ1-KCNE1 complex to suppress the current amplitude without altering the slow gating kinetics. Our goal here is to test the role of KCNE2 in cardiac IKs channel function. Pulse-chase experiments in COS-7 cells show that there is a KCNE1 turnover in the KCNQ1-KCNE1 complex, supporting the possibility that KCNE1 in the IKs channel complex can be substituted by KCNE2 when the latter is available. Biotinylation experiments in COS-7 cells show that although KCNE1 relies on KCNQ1 coassembly for more efficient cell surface expression, KCNE2 can independently traffic to the cell surface, thus becoming available for substituting KCNE1 in the IKs channel complex. Injecting vesicles carrying KCNE1 or KCNE2 into KCNQ1-expressing oocytes leads to KCNQ1 modulation in the same manner as KCNQ1+KCNEx (where x=1 or 2) cRNA coinjection. Thus, free KCNEx peptides delivered to the cell membrane can associate with existing KCNQ1 channels to modulate their function. Finally, adenovirus-mediated KCNE2 expression in adult guinea pig ventricular myocytes exhibited colocalization with native KCNQ1 protein and reduces the native IKs current density. We propose that in cardiac myocytes the IKs current amplitude is under dynamic control by the availability of KCNE2 subunits in the cell membrane.
心脏缓慢延迟整流钾通道(IKs)由KCNQ1(形成孔道)和KCNE1(辅助)亚基组成。尽管KCNE1是IKs的一个必需组成部分,赋予其独特的缓慢门控动力学,但KCNE2也在人类心脏中表达。体外实验表明,KCNE2可与KCNQ1 - KCNE1复合物结合,抑制电流幅度,而不改变缓慢门控动力学。我们在此的目标是测试KCNE2在心脏IKs通道功能中的作用。在COS - 7细胞中进行的脉冲追踪实验表明,KCNQ1 - KCNE1复合物中存在KCNE1的周转,这支持了在有KCNE2时,IKs通道复合物中的KCNE1可被KCNE2替代的可能性。在COS - 7细胞中进行的生物素化实验表明,尽管KCNE1依赖与KCNQ1共同组装以实现更有效的细胞表面表达,但KCNE2可独立转运至细胞表面,从而可用于替代IKs通道复合物中的KCNE1。将携带KCNE1或KCNE2的囊泡注射到表达KCNQ1的卵母细胞中,导致KCNQ1的调节方式与共注射KCNQ1 + KCNEx(其中x = 1或2)的cRNA相同。因此,递送至细胞膜的游离KCNEx肽可与现有的KCNQ1通道结合以调节其功能。最后,成年豚鼠心室肌细胞中腺病毒介导的KCNE2表达与天然KCNQ1蛋白共定位,并降低天然IKs电流密度。我们提出,在心肌细胞中,IKs电流幅度受细胞膜中KCNE2亚基可用性的动态控制。