Suppr超能文献

成年心室肌细胞分离KCNQ1和KCNE1以控制振幅,直到需要更大振幅时。

Adult Ventricular Myocytes Segregate KCNQ1 and KCNE1 to Keep the Amplitude in Check Until When Larger Is Needed.

作者信息

Jiang Min, Wang Yuhong, Tseng Gea-Ny

机构信息

From the Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond (M.J., Y.W., G.-N.T.); and Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (M.J.).

出版信息

Circ Arrhythm Electrophysiol. 2017 Jun;10(6). doi: 10.1161/CIRCEP.117.005084.

Abstract

BACKGROUND

KCNQ1 and KCNE1 assemble to form the slow delayed rectifier () channel critical for shortening ventricular action potentials during high β-adrenergic tone. However, too much under basal conditions poses an arrhythmogenic risk. Our objective is to understand how adult ventricular myocytes regulate the amplitudes under basal conditions and in response to stress.

METHODS AND RESULTS

We express fluorescently tagged KCNQ1 and KCNE1 in adult ventricular myocytes and follow their biogenesis and trafficking paths. We also study the distribution patterns of native KCNQ1 and KCNE1, and their relationship to amplitudes, in chronically stressed ventricular myocytes, and use COS-7 cell expression to probe the underlying mechanism. We show that KCNQ1 and KCNE1 are both translated in the perinuclear region but traffic by different routes, independent of each other, to their separate subcellular locations. KCNQ1 mainly resides in the jSR (junctional sarcoplasmic reticulum), whereas KCNE1 resides on the cell surface. Under basal conditions, only a small portion of KCNQ1 reaches the cell surface to support the function. However, in response to chronic stress, KCNQ1 traffics from jSR to the cell surface to boost the amplitude in a process depending on Ca binding to CaM (calmodulin).

CONCLUSIONS

In adult ventricular myocytes, KCNE1 maintains a stable presence on the cell surface, whereas KCNQ1 is dynamic in its localization. KCNQ1 is largely in an intracellular reservoir under basal conditions but can traffic to the cell surface and boost the amplitude in response to stress.

摘要

背景

KCNQ1和KCNE1组装形成缓慢延迟整流钾通道,这对于在高β - 肾上腺素能张力下缩短心室动作电位至关重要。然而,在基础条件下过多的该通道会带来致心律失常风险。我们的目标是了解成年心室肌细胞在基础条件下以及对应激反应时如何调节该通道的幅度。

方法与结果

我们在成年心室肌细胞中表达荧光标记的KCNQ1和KCNE1,并追踪它们的生物发生和运输路径。我们还研究了慢性应激心室肌细胞中天然KCNQ1和KCNE1的分布模式,以及它们与通道幅度的关系,并利用COS - 7细胞表达来探究潜在机制。我们发现KCNQ1和KCNE1均在核周区域翻译,但通过不同途径运输,彼此独立,到达各自不同的亚细胞位置。KCNQ1主要位于连接肌浆网(jSR),而KCNE1位于细胞表面。在基础条件下,只有一小部分KCNQ1到达细胞表面以支持该通道功能。然而,在慢性应激反应中,KCNQ1从jSR运输到细胞表面,以在一个依赖于钙与钙调蛋白(CaM)结合的过程中提高通道幅度。

结论

在成年心室肌细胞中,KCNE1在细胞表面保持稳定存在,而KCNQ1的定位是动态的。在基础条件下,KCNQ1主要存在于细胞内储存库中,但在应激反应时可运输到细胞表面并提高通道幅度。

相似文献

1
Adult Ventricular Myocytes Segregate KCNQ1 and KCNE1 to Keep the Amplitude in Check Until When Larger Is Needed.
Circ Arrhythm Electrophysiol. 2017 Jun;10(6). doi: 10.1161/CIRCEP.117.005084.
3
Dynamic partnership between KCNQ1 and KCNE1 and influence on cardiac IKs current amplitude by KCNE2.
J Biol Chem. 2009 Jun 12;284(24):16452-16462. doi: 10.1074/jbc.M808262200. Epub 2009 Apr 16.
4
7
LQT1 mutations in KCNQ1 C-terminus assembly domain suppress IKs using different mechanisms.
Cardiovasc Res. 2014 Dec 1;104(3):501-11. doi: 10.1093/cvr/cvu231. Epub 2014 Oct 24.
8
Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8732-7. doi: 10.1073/pnas.1300684110. Epub 2013 May 6.
9
BACE1 modulates gating of KCNQ1 (Kv7.1) and cardiac delayed rectifier KCNQ1/KCNE1 (IKs).
J Mol Cell Cardiol. 2015 Dec;89(Pt B):335-48. doi: 10.1016/j.yjmcc.2015.10.006. Epub 2015 Oct 8.

引用本文的文献

1
Long QT Interval Syndrome and Female Sex-Review and Case Report.
Reports (MDPI). 2025 Mar 17;8(1):32. doi: 10.3390/reports8010032.
2
The fully activated open state of KCNQ1 controls the cardiac "fight-or-flight" response.
PNAS Nexus. 2024 Oct 9;3(10):pgae452. doi: 10.1093/pnasnexus/pgae452. eCollection 2024 Oct.
3
Targeting the I Channel PKA Phosphorylation Axis to Restore Its Function in High-Risk LQT1 Variants.
Circ Res. 2024 Sep 13;135(7):722-738. doi: 10.1161/CIRCRESAHA.124.325009. Epub 2024 Aug 21.
4
Persistent PKA activation redistributes NaV1.5 to the cell surface of adult rat ventricular myocytes.
J Gen Physiol. 2024 Feb 5;156(2). doi: 10.1085/jgp.202313436. Epub 2024 Jan 16.
5
Is there an emerging role for I in aging-related ventricular arrhythmias?
J Cell Physiol. 2022 Dec;237(12):4337-4338. doi: 10.1002/jcp.30658. Epub 2021 Dec 8.
6
Long QT syndrome - Bench to bedside.
Heart Rhythm O2. 2021 Jan 22;2(1):89-106. doi: 10.1016/j.hroo.2021.01.006. eCollection 2021 Feb.
7
8
Global identification of S-palmitoylated proteins and detection of palmitoylating (DHHC) enzymes in heart.
J Mol Cell Cardiol. 2021 Jun;155:1-9. doi: 10.1016/j.yjmcc.2021.02.007. Epub 2021 Feb 23.
9
Gating and Regulation of KCNQ1 and KCNQ1 + KCNE1 Channel Complexes.
Front Physiol. 2020 Jun 4;11:504. doi: 10.3389/fphys.2020.00504. eCollection 2020.
10
Genetic algorithm-based personalized models of human cardiac action potential.
PLoS One. 2020 May 11;15(5):e0231695. doi: 10.1371/journal.pone.0231695. eCollection 2020.

本文引用的文献

1
Cellular mechanism of premature ventricular contraction-induced cardiomyopathy.
Heart Rhythm. 2014 Nov;11(11):2064-72. doi: 10.1016/j.hrthm.2014.07.022. Epub 2014 Jul 18.
3
Ionic mechanisms limiting cardiac repolarization reserve in humans compared to dogs.
J Physiol. 2013 Sep 1;591(17):4189-206. doi: 10.1113/jphysiol.2013.261198. Epub 2013 Jul 22.
4
Arrivals and departures at the plasma membrane: direct and indirect transport routes.
Cell Tissue Res. 2013 Apr;352(1):5-20. doi: 10.1007/s00441-012-1409-5. Epub 2012 Apr 15.
7
KCNQ1/KCNE1 assembly, co-translation not required.
Channels (Austin). 2010 Mar-Apr;4(2):108-14. doi: 10.4161/chan.4.2.11141. Epub 2010 Mar 6.
8
Dynamic partnership between KCNQ1 and KCNE1 and influence on cardiac IKs current amplitude by KCNE2.
J Biol Chem. 2009 Jun 12;284(24):16452-16462. doi: 10.1074/jbc.M808262200. Epub 2009 Apr 16.
9
Cardiac memory: a work in progress.
Heart Rhythm. 2009 Apr;6(4):564-70. doi: 10.1016/j.hrthm.2009.01.008. Epub 2009 Jan 16.
10
MinK-dependent internalization of the IKs potassium channel.
Cardiovasc Res. 2009 Jun 1;82(3):430-8. doi: 10.1093/cvr/cvp047. Epub 2009 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验