Suppr超能文献

A mathematical model of overall cerebral blood flow regulation in the rat.

作者信息

Ursino M

机构信息

Department of Electronics, Computer Sciences and Systems, Bologna, Italy.

出版信息

IEEE Trans Biomed Eng. 1991 Aug;38(8):795-807. doi: 10.1109/10.83592.

Abstract

In the present work a mathematical model of the cerebrovascular regulatory system in the rat is presented. The model, a generalization of our previous one, includes the reactivity of proximal segments of the cerebrovascular bed and the neurogenic and myogenic feedback regulatory mechanisms besides the action of chemical regulatory factors. The model is then used to analyze the interaction of mechanisms regulating cerebral blood flow in several conditions of physiological importance. In the first stage of the work we simulated experiments in which the neural fibers are cut and artificially stimulated with external means. According to experimental evidence, simulation results point out the existence of an escape of blood flow from stimulation. The model imputes this escape phenomenon to the antagonistic action of chemical factors working on the distal segments of the cerebrovascular bed. In a second stage, we studied the neurogenic mechanism action in a physiological closed-loop condition. With this general model, autoregulation to arterial pressure changes and postischemic reactive hyperemia have been analyzed. A comparison of simulation results with recent experimental data shows that the model is able to produce 60-70% of the experimental regulatory capacity of the cerebrovascular bed. However, some relevant discrepancies still exist between the model and the experimental results, especially as regards the dilatory capacity of small cerebral arterioles. These discrepancies underline the existence of further regulatory mechanisms working on the cerebrovascular bed, the nature of which must still be clarified.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验