Suppr超能文献

临床环境中的电磁跟踪

Electromagnetic tracking in the clinical environment.

作者信息

Yaniv Ziv, Wilson Emmanuel, Lindisch David, Cleary Kevin

机构信息

Imaging Science and Information Systems Center, Department of Radiology, Georgetown University Medical Center, Washington, DC 20057, USA.

出版信息

Med Phys. 2009 Mar;36(3):876-92. doi: 10.1118/1.3075829.

Abstract

When choosing an electromagnetic tracking system (EMTS) for image-guided procedures several factors must be taken into consideration. Among others these include the system's refresh rate, the number of sensors that need to be tracked, the size of the navigated region, the system interaction with the environment, whether the sensors can be embedded into the tools and provide the desired transformation data, and tracking accuracy and robustness. To date, the only factors that have been studied extensively are the accuracy and the susceptibility of EMTSs to distortions caused by ferromagnetic materials. In this paper the authors shift the focus from analysis of system accuracy and stability to the broader set of factors influencing the utility of EMTS in the clinical environment. The authors provide an analysis based on all of the factors specified above, as assessed in three clinical environments. They evaluate two commercial tracking systems, the Aurora system from Northern Digital Inc., and the 3D Guidance system with three different field generators from Ascension Technology Corp. The authors show that these systems are applicable to specific procedures and specific environments, but that currently, no single system configuration provides a comprehensive solution across procedures and environments.

摘要

在为图像引导手术选择电磁跟踪系统(EMTS)时,必须考虑几个因素。其中包括系统的刷新率、需要跟踪的传感器数量、导航区域的大小、系统与环境的相互作用、传感器是否可以嵌入工具并提供所需的变换数据,以及跟踪精度和鲁棒性。迄今为止,唯一得到广泛研究的因素是EMTS的精度以及对铁磁材料引起的失真的敏感性。在本文中,作者将重点从系统精度和稳定性分析转移到影响EMTS在临床环境中效用的更广泛因素集。作者基于上述所有因素进行了分析,这些因素是在三种临床环境中评估的。他们评估了两种商业跟踪系统,北方数字公司的Aurora系统,以及阿森松技术公司的带有三种不同场发生器的3D Guidance系统。作者表明,这些系统适用于特定的手术和特定的环境,但目前,没有单一的系统配置能在所有手术和环境中提供全面的解决方案。

相似文献

1
Electromagnetic tracking in the clinical environment.
Med Phys. 2009 Mar;36(3):876-92. doi: 10.1118/1.3075829.
5
Electromagnetic navigation system for CT-guided biopsy of small lesions.
AJR Am J Roentgenol. 2011 May;196(5):1194-200. doi: 10.2214/AJR.10.5151.
7
Effect of 3D ultrasound probes on the accuracy of electromagnetic tracking systems.
Ultrasound Med Biol. 2006 Sep;32(9):1359-68. doi: 10.1016/j.ultrasmedbio.2006.05.013.
8
Navigation with electromagnetic tracking for interventional radiology procedures: a feasibility study.
J Vasc Interv Radiol. 2005 Apr;16(4):493-505. doi: 10.1097/01.RVI.0000148827.62296.B4.
9
Quantitative evaluation for accumulative calibration error and video-CT registration errors in electromagnetic-tracked endoscopy.
Int J Comput Assist Radiol Surg. 2011 May;6(3):407-19. doi: 10.1007/s11548-010-0518-4. Epub 2010 Aug 17.
10
Construction of a conductive distortion reduced electromagnetic tracking system for computer assisted image-guided interventions.
Med Eng Phys. 2014 Nov;36(11):1496-501. doi: 10.1016/j.medengphy.2014.07.018. Epub 2014 Aug 22.

引用本文的文献

1
In Vitro Assessment and Comparison of a Novel Electromagnetic Tracking System for Stereotactic DBS Surgery.
Ann Biomed Eng. 2025 Jun;53(6):1512-1523. doi: 10.1007/s10439-025-03728-9. Epub 2025 Apr 10.
2
Distortion-Free Magnetic Tracking of Metal Instruments in Image-Guided Interventions.
Sensors (Basel). 2024 Aug 20;24(16):5364. doi: 10.3390/s24165364.
3
Enhancing electromagnetic tracking accuracy in medical applications using pre-trained witness sensor distortion models.
Int J Comput Assist Radiol Surg. 2024 Jan;19(1):27-31. doi: 10.1007/s11548-023-02994-z. Epub 2023 Jul 27.
4
On electromagnetic head digitization in MEG and EEG.
Sci Rep. 2023 Mar 7;13(1):3801. doi: 10.1038/s41598-023-30223-9.
6
A Radiolucent Electromagnetic Tracking System for Use with Intraoperative X-ray Imaging.
Sensors (Basel). 2021 May 12;21(10):3357. doi: 10.3390/s21103357.
7
Robot-assisted mandibular angle osteotomy using electromagnetic navigation.
Ann Transl Med. 2021 Apr;9(7):567. doi: 10.21037/atm-20-6305.
8
Planar Body-Mounted Sensors for Electromagnetic Tracking.
Sensors (Basel). 2021 Apr 16;21(8):2822. doi: 10.3390/s21082822.
9
Design and Evaluation of a Percutaneous Fragment Manipulation Device for Minimally Invasive Fracture Surgery.
Front Robot AI. 2019 Oct 30;6:103. doi: 10.3389/frobt.2019.00103. eCollection 2019.
10
Robotic assistance for quick and accurate image-guided needle placement.
Updates Surg. 2021 Jun;73(3):1197-1201. doi: 10.1007/s13304-020-00956-7. Epub 2021 Jan 4.

本文引用的文献

1
Design and application of an assessment protocol for electromagnetic tracking systems.
Med Phys. 2005 Jul;32(7Part1):2371-2379. doi: 10.1118/1.1944327.
2
Volumetric characterization of the Aurora magnetic tracker system for image-guided transorbital endoscopic procedures.
Phys Med Biol. 2008 Aug 21;53(16):4355-68. doi: 10.1088/0031-9155/53/16/009. Epub 2008 Jul 25.
6
Hybrid bronchoscope tracking using a magnetic tracking sensor and image registration.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):543-50. doi: 10.1007/11566489_67.
7
Electromagnetic tracker measurement error simulation and tool design.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):73-80. doi: 10.1007/11566489_10.
9
Accuracy assessment protocols for electromagnetic tracking systems.
Phys Med Biol. 2003 Jul 21;48(14):2241-51. doi: 10.1088/0031-9155/48/14/314.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验