Suppr超能文献

新月柄杆菌的形态学及新月柄杆菌素的机械作用。

Morphology of Caulobacter crescentus and the Mechanical Role of Crescentin.

作者信息

Kim Jin Seob, Sun Sean X

出版信息

Biophys J. 2009 Apr 22;96(8):L47-9. doi: 10.1016/j.bpj.2009.02.010.

Abstract

Bacterial cells exist in a wide variety of shapes. To understand the mechanism of bacterial shape maintenance, we investigate the morphology of Caulobacter crescentus, which is a Gram-negative bacterium that adopts a helical crescent shape. It is known that crescentin, an intermediate filament homolog of C. crescentus, is required for maintaining this asymmetrical cell shape. We employ a continuum model to understand the interaction between the bacterial cell wall and the crescentin bundle. The model allows us to examine different scenarios of attaching crescentin to the cell wall and compute the shape of the bacterium. Results show that if the sole influence of crescentin is mechanical, then the crescentin bundle is unrealistically rigid and must be attached to the cell wall directly. The model suggests that alternative roles for crescentin such as how it influences cell wall growth must be considered.

摘要

细菌细胞存在多种形状。为了解细菌形状维持的机制,我们研究了新月柄杆菌的形态,它是一种革兰氏阴性菌,呈螺旋状新月形。已知新月柄杆菌的中间丝同源物新月菌素是维持这种不对称细胞形状所必需的。我们采用连续介质模型来理解细菌细胞壁与新月菌素束之间的相互作用。该模型使我们能够研究将新月菌素附着到细胞壁的不同情况,并计算细菌的形状。结果表明,如果新月菌素的唯一作用是机械性的,那么新月菌素束将具有不切实际的刚性,并且必须直接附着到细胞壁上。该模型表明,必须考虑新月菌素的其他作用,例如它如何影响细胞壁生长。

相似文献

1
Morphology of Caulobacter crescentus and the Mechanical Role of Crescentin.
Biophys J. 2009 Apr 22;96(8):L47-9. doi: 10.1016/j.bpj.2009.02.010.
2
The bacterial cytoskeleton: an intermediate filament-like function in cell shape.
Cell. 2003 Dec 12;115(6):705-13. doi: 10.1016/s0092-8674(03)00935-8.
3
Filament structure and subcellular organization of the bacterial intermediate filament-like protein crescentin.
Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2309984121. doi: 10.1073/pnas.2309984121. Epub 2024 Feb 7.
4
Bacterial cell curvature through mechanical control of cell growth.
EMBO J. 2009 May 6;28(9):1208-19. doi: 10.1038/emboj.2009.61. Epub 2009 Mar 12.
5
The domain organization of the bacterial intermediate filament-like protein crescentin is important for assembly and function.
Cytoskeleton (Hoboken). 2011 Apr;68(4):205-19. doi: 10.1002/cm.20505. Epub 2011 Mar 4.
6
Bacterial intermediate filaments: in vivo assembly, organization, and dynamics of crescentin.
Genes Dev. 2009 May 1;23(9):1131-44. doi: 10.1101/gad.1795509.
7
Intermediate filament-like cytoskeleton of Caulobacter crescentus.
J Mol Microbiol Biotechnol. 2006;11(3-5):152-8. doi: 10.1159/000094051.
9
Bacterial shape: concave coiled coils curve caulobacter.
Curr Biol. 2004 Mar 23;14(6):R242-4. doi: 10.1016/j.cub.2004.02.057.
10
Understanding the shapes of bacteria just got more complicated.
Mol Microbiol. 2006 Oct;62(1):1-4. doi: 10.1111/j.1365-2958.2006.05358.x.

引用本文的文献

1
Cell biomechanics and mechanobiology in bacteria: Challenges and opportunities.
APL Bioeng. 2020 Apr 1;4(2):021501. doi: 10.1063/1.5135585. eCollection 2020 Jun.
2
Motile curved bacteria are Pareto-optimal.
Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14440-14447. doi: 10.1073/pnas.1818997116. Epub 2019 Jul 2.
4
Dynamical Localization of DivL and PleC in the Asymmetric Division Cycle of Caulobacter crescentus: A Theoretical Investigation of Alternative Models.
PLoS Comput Biol. 2015 Jul 17;11(7):e1004348. doi: 10.1371/journal.pcbi.1004348. eCollection 2015 Jul.
5
Growth of curved and helical bacterial cells.
Soft Matter. 2012 Jul 28;8(28):7446-7451. doi: 10.1039/C2SM25452B.
6
How and why cells grow as rods.
BMC Biol. 2014 Aug 2;12:54. doi: 10.1186/s12915-014-0054-8.
7
Physics of bacterial morphogenesis.
Microbiol Mol Biol Rev. 2011 Dec;75(4):543-65. doi: 10.1128/MMBR.00006-11.
8
Morphology, growth, and size limit of bacterial cells.
Phys Rev Lett. 2010 Jul 9;105(2):028101. doi: 10.1103/PhysRevLett.105.028101. Epub 2010 Jul 7.
9
Curvature and shape determination of growing bacteria.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Dec;80(6 Pt 1):062901. doi: 10.1103/PhysRevE.80.062901. Epub 2009 Dec 17.
10
Dynamics of the bacterial intermediate filament crescentin in vitro and in vivo.
PLoS One. 2010 Jan 25;5(1):e8855. doi: 10.1371/journal.pone.0008855.

本文引用的文献

1
Cell shape and cell-wall organization in Gram-negative bacteria.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19282-7. doi: 10.1073/pnas.0805309105. Epub 2008 Dec 2.
2
Cytoskeletal bundle mechanics.
Biophys J. 2008 Apr 15;94(8):2955-64. doi: 10.1529/biophysj.107.119743. Epub 2007 Nov 30.
3
Z-ring force and cell shape during division in rod-like bacteria.
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16110-5. doi: 10.1073/pnas.0702925104. Epub 2007 Oct 3.
4
The push and pull of the bacterial cytoskeleton.
Trends Cell Biol. 2007 May;17(5):239-45. doi: 10.1016/j.tcb.2007.03.005. Epub 2007 Apr 16.
5
Elasticity of alpha-helical coiled coils.
Phys Rev Lett. 2006 Dec 15;97(24):248101. doi: 10.1103/PhysRevLett.97.248101.
6
The bacterial cytoskeleton.
Microbiol Mol Biol Rev. 2006 Sep;70(3):729-54. doi: 10.1128/MMBR.00017-06.
7
Bacterial cell shape.
Nat Rev Microbiol. 2005 Aug;3(8):601-10. doi: 10.1038/nrmicro1205.
8
The physics of filopodial protrusion.
Biophys J. 2005 Aug;89(2):782-95. doi: 10.1529/biophysj.104.056515. Epub 2005 May 6.
9
The bacterial cytoskeleton: an intermediate filament-like function in cell shape.
Cell. 2003 Dec 12;115(6):705-13. doi: 10.1016/s0092-8674(03)00935-8.
10
Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy.
J Bacteriol. 1999 Nov;181(22):6865-75. doi: 10.1128/JB.181.22.6865-6875.1999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验