Liu Hanbin, Shi Yemin, Chen Xiaojiang S, Warshel Arieh
Departments of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
Proc Natl Acad Sci U S A. 2009 May 5;106(18):7449-54. doi: 10.1073/pnas.0900532106. Epub 2009 Apr 21.
The molecular origin of the action of helicases is explored, starting with a model built based on the different X-ray structures of the large tumor antigen (LTag) hexameric helicase and a simplified model containing the ionized phosphate backbones of a single-strand DNA. The coupling between the protein structural changes and the translocation process is quantified using an effective electrostatic free-energy surface for the protein/DNA complex. This surface is then used in Langevin dynamics simulations of the time dependence of the translocation process. Remarkably, the simulated motion along the free-energy surface results in a vectorial translocation of the DNA, consistent with the biological process. The electrostatic energy of the system appears to reproduce the directionality of this process. Thus, we are able to provide a consistent structure-based molecular description of the energetic and dynamics of the translocation process. This analysis may have general implications for relating structural models to translocation directionality in helicases and other DNA translocases.
本文从基于大肿瘤抗原(LTag)六聚体解旋酶的不同X射线结构构建的模型以及包含单链DNA离子化磷酸主链的简化模型出发,探索了解旋酶作用的分子起源。利用蛋白质/DNA复合物的有效静电自由能表面,对蛋白质结构变化与易位过程之间的耦合进行了量化。然后,将该表面用于易位过程时间依赖性的朗之万动力学模拟。值得注意的是,沿自由能表面的模拟运动导致了DNA的矢量易位,这与生物学过程一致。系统的静电能似乎再现了这一过程的方向性。因此,我们能够提供一个基于结构的关于易位过程能量和动力学的一致分子描述。该分析可能对将结构模型与解旋酶及其他DNA转位酶中的易位方向性联系起来具有普遍意义。