Mukherjee Shayantani, Alhadeff Raphael, Warshel Arieh
Department of Chemistry, University of Southern California, Los Angeles, CA 90089.
Department of Chemistry, University of Southern California, Los Angeles, CA 90089
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2259-2264. doi: 10.1073/pnas.1700318114. Epub 2017 Feb 13.
The detailed dynamics of the cycle of myosin-V are explored by simulation approaches, examining the nature of the energy-driven motion. Our study started with Langevin dynamics (LD) simulations on a very coarse landscape with a single rate-limiting barrier and reproduced the stall force and the hand-over-hand dynamics. We then considered a more realistic landscape and used time-dependent Monte Carlo (MC) simulations that allowed trajectories long enough to reproduce the force/velocity characteristic sigmoidal correlation, while also reproducing the hand-over-hand motion. Overall, our study indicated that the notion of a downhill lever-up to lever-down process (popularly known as the powerstroke mechanism) is the result of the energetics of the complete myosin-V cycle and is not the source of directional motion or force generation on its own. The present work further emphasizes the need to use well-defined energy landscapes in studying molecular motors in general and myosin in particular.
通过模拟方法探索了肌球蛋白-V循环的详细动力学,研究了能量驱动运动的本质。我们的研究始于在具有单个限速障碍的非常粗糙的势面上进行的朗之万动力学(LD)模拟,并重现了失速力和交替手抓握动力学。然后,我们考虑了一个更现实的势面,并使用了时间相关的蒙特卡罗(MC)模拟,该模拟允许轨迹足够长,以重现力/速度特征的S形相关性,同时也重现交替手抓握运动。总体而言,我们的研究表明,从杠杆上升到杠杆下降的下坡过程(通常称为动力冲程机制)的概念是完整肌球蛋白-V循环能量学的结果,而不是其自身定向运动或力产生的来源。目前的工作进一步强调了在一般研究分子马达特别是肌球蛋白时使用明确定义的能量势面的必要性。