Suppr超能文献

大肠杆菌中硒代半胱氨酸特异性转运RNA(Sec)的氨酰基-受体茎的长度是其与延伸因子SELB或Tu结合的决定因素。

The length of the aminoacyl-acceptor stem of the selenocysteine-specific tRNA(Sec) of Escherichia coli is the determinant for binding to elongation factors SELB or Tu.

作者信息

Baron C, Böck A

机构信息

Lehrstuhl für Mikrobiologie, Universität Munich, Federal Republic of Germany.

出版信息

J Biol Chem. 1991 Oct 25;266(30):20375-9.

PMID:1939093
Abstract

Mutations in selC, which reduce the 8-base pair aminoacyl-acceptor helix to the canonical 7-base pair length (tRNA(Sec)(delAc] or which replace the extra arm of tRNA(Sec) by that of a serine acceptor tRNA species (tRNA(Sec)(ExS), block the function in selenoprotein synthesis in vivo (Baron, C., Heider, J., and Böck, A. (1990) Nucleic Acids Res. 18, 6761-6766). tRNA(Sec), tRNA(Sec)(delAc), and tRNA(Sec)(ExS) were purified and analyzed for their interaction with purified seryl-tRNA synthetase, selenocysteine synthase and translation factors SELB and EF-Tu. It was found that seryl-tRNA synthetase displays 10-fold impaired Km and Kcat values for tRNA(Sec) in comparison to tRNA(Ser), decreasing the overall charging efficiency (Kcat/Km) of tRNA(Sec) to 1% of that characteristic for tRNA(Ser). tRNA(Sec)(ExS) was a less efficient substrate for the enzyme (Kcat/Km 0.2% of the tRNA(Ser) value) whereas the tRNA(Ser)(delAc) variant was charged with an approximately 2-3-fold improved rate compared to wild-type tRNA(Sec). Both mutant tRNA variants, when charged with L-serine, were able to interact with selenocysteine synthase to give rise to selenocysteyl-tRNA with tRNA(Sec)(ExS) being as efficient as wild-type tRNA(Sec). Seryl-tRNA(Sec)(delAc), on the other hand, was selenylated very slowly. Reduction of the length of the aminoacyl-acceptor stem to 7 base pairs prevented the interaction with translation factor SELB but allowed binding to EF-Tu, irrespective of whether tRNA(Sec)(delAc) was charged with serine or selenocysteine. The aminoacyl-acceptor helix of tRNA(Sec), therefore, is a major determinant directing binding to SELB and precluding interaction with EF-Tu.

摘要

selC中的突变会将8个碱基对的氨酰基-受体螺旋缩短为标准的7个碱基对长度(tRNA(Sec)(delAc]),或者用丝氨酸受体tRNA种类的额外臂取代tRNA(Sec)的额外臂(tRNA(Sec)(ExS)),这会阻断体内硒蛋白合成的功能(Baron, C., Heider, J., and Böck, A. (1990) Nucleic Acids Res. 18, 6761 - 6766)。对tRNA(Sec)、tRNA(Sec)(delAc)和tRNA(Sec)(ExS)进行了纯化,并分析了它们与纯化的丝氨酰-tRNA合成酶、硒代半胱氨酸合成酶以及翻译因子SELB和EF-Tu的相互作用。结果发现,与tRNA(Ser)相比,丝氨酰-tRNA合成酶对tRNA(Sec)的Km和Kcat值受损10倍,使tRNA(Sec)的整体充电效率(Kcat/Km)降至tRNA(Ser)特征值的1%。tRNA(Sec)(ExS)是该酶效率较低的底物(Kcat/Km为tRNA(Ser)值的0.2%),而tRNA(Ser)(delAc)变体的充电速率比野生型tRNA(Sec)提高了约2 - 3倍。当这两种突变tRNA变体都用L-丝氨酸充电时,它们都能够与硒代半胱氨酸合成酶相互作用,产生硒代半胱氨酰-tRNA,其中tRNA(Sec)(ExS)与野生型tRNA(Sec)一样高效。另一方面,丝氨酰-tRNA(Sec)(delAc)的硒化非常缓慢。将氨酰基-受体茎的长度缩短到7个碱基对会阻止与翻译因子SELB的相互作用,但允许与EF-Tu结合,无论tRNA(Sec)(delAc)是用丝氨酸还是硒代半胱氨酸充电。因此,tRNA(Sec)的氨酰基-受体螺旋是指导与SELB结合并排除与EF-Tu相互作用的主要决定因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验