Suppr超能文献

细胞色素c氧化酶中水分子的分子动力学模拟揭示了两条水流出途径及其运输机制。

Molecular dynamics simulation of water in cytochrome c oxidase reveals two water exit pathways and the mechanism of transport.

作者信息

Sugitani Ryogo, Stuchebrukhov Alexei A

机构信息

Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA.

出版信息

Biochim Biophys Acta. 2009 Sep;1787(9):1140-50. doi: 10.1016/j.bbabio.2009.04.004. Epub 2009 Apr 21.

Abstract

We have examined the network of connected internal cavities in cytochrome c oxidase along which water produced at the catalytic center is removed from the enzyme. Using combination of structural analysis, molecular dynamics simulations, and free energy calculations we have identified two exit pathways that connect the Mg2+ ion cavity to the outside of the enzyme. Each pathway has a well-defined bottleneck, which determines the overall rate of water traffic along the exit pathway, and a specific cooperative mechanism of passing it. One of the pathways is going via Arg438/439 (in bovine numbering) toward the CuA center, approaching closely its His204B ligand and Lys171B residue; and the other is going toward Asp364 and Thr294. Comparison of the pathways among different aa3-type enzymes shows that they are well conserved. Possible connections of the finding to redox-coupled proton pumping mechanism are discussed. We propose specific mutations near the bottlenecks of the exit pathways that can test some of our hypotheses.

摘要

我们研究了细胞色素c氧化酶中相连内腔的网络,催化中心产生的水通过该网络从酶中排出。通过结合结构分析、分子动力学模拟和自由能计算,我们确定了两条将Mg2+离子腔与酶外部相连的出口途径。每条途径都有一个明确的瓶颈,它决定了沿出口途径的水运输总速率,以及通过它的特定协同机制。其中一条途径是通过Arg438/439(牛的编号)朝向CuA中心,靠近其His204B配体和Lys171B残基;另一条途径是朝向Asp364和Thr294。不同aa3型酶之间途径的比较表明它们高度保守。讨论了这一发现与氧化还原偶联质子泵机制的可能联系。我们提出在出口途径瓶颈附近进行特定突变,以检验我们的一些假设。

相似文献

1
Molecular dynamics simulation of water in cytochrome c oxidase reveals two water exit pathways and the mechanism of transport.
Biochim Biophys Acta. 2009 Sep;1787(9):1140-50. doi: 10.1016/j.bbabio.2009.04.004. Epub 2009 Apr 21.
2
Proton exit channels in bovine cytochrome c oxidase.
J Phys Chem B. 2005 Feb 10;109(5):1999-2006. doi: 10.1021/jp0464371.
3
Water exit pathways and proton pumping mechanism in B-type cytochrome c oxidase from molecular dynamics simulations.
Biochim Biophys Acta. 2016 Sep;1857(9):1594-1606. doi: 10.1016/j.bbabio.2016.06.005. Epub 2016 Jun 16.
5
Computer simulation of explicit proton translocation in cytochrome c oxidase: the D-pathway.
Proc Natl Acad Sci U S A. 2005 May 10;102(19):6795-800. doi: 10.1073/pnas.0408117102. Epub 2005 Apr 27.
6
Computer simulation of water in cytochrome c oxidase.
Biochim Biophys Acta. 2003 Mar 6;1557(1-3):99-107. doi: 10.1016/s0005-2728(03)00002-1.
8
Gating of proton and water transfer in the respiratory enzyme cytochrome c oxidase.
Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10478-81. doi: 10.1073/pnas.0502873102. Epub 2005 Jul 13.
9
Electrostatic study of the proton pumping mechanism in bovine heart cytochrome C oxidase.
J Am Chem Soc. 2004 Feb 18;126(6):1858-71. doi: 10.1021/ja038267w.

引用本文的文献

1
Structural and functional mechanisms of cytochrome c oxidase.
J Inorg Biochem. 2025 Jan;262:112730. doi: 10.1016/j.jinorgbio.2024.112730. Epub 2024 Sep 8.
5
A common coupling mechanism for A-type heme-copper oxidases from bacteria to mitochondria.
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9349-9355. doi: 10.1073/pnas.2001572117. Epub 2020 Apr 14.
6
Cytochrome c phosphorylation: Control of mitochondrial electron transport chain flux and apoptosis.
Int J Biochem Cell Biol. 2020 Apr;121:105704. doi: 10.1016/j.biocel.2020.105704. Epub 2020 Feb 2.
7
Snapshot of an oxygen intermediate in the catalytic reaction of cytochrome oxidase.
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3572-3577. doi: 10.1073/pnas.1814526116. Epub 2019 Feb 11.
8
DEPC modification of the Cu protein from Thermus thermophilus.
J Biol Inorg Chem. 2019 Feb;24(1):117-135. doi: 10.1007/s00775-018-1632-y. Epub 2018 Dec 6.
9
Reactive oxygen species leave a damage trail that reveals water channels in Photosystem II.
Sci Adv. 2017 Nov 17;3(11):eaao3013. doi: 10.1126/sciadv.aao3013. eCollection 2017 Nov.

本文引用的文献

4
A chemically explicit model for the mechanism of proton pumping in heme-copper oxidases.
J Bioenerg Biomembr. 2008 Oct;40(5):541-9. doi: 10.1007/s10863-008-9182-6. Epub 2008 Oct 1.
5
Theoretical and computational analysis of the membrane potential generated by cytochrome c oxidase upon single electron injection into the enzyme.
Biochim Biophys Acta. 2008 Sep;1777(9):1129-39. doi: 10.1016/j.bbabio.2008.05.006. Epub 2008 May 19.
6
Impaired proton pumping in cytochrome c oxidase upon structural alteration of the D pathway.
Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):897-903. doi: 10.1016/j.bbabio.2008.04.013. Epub 2008 Apr 16.
7
Glutamic acid 242 is a valve in the proton pump of cytochrome c oxidase.
Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6255-9. doi: 10.1073/pnas.0800770105. Epub 2008 Apr 22.
8
Electrostatic control of proton pumping in cytochrome c oxidase.
Biochim Biophys Acta. 2008 Mar;1777(3):277-84. doi: 10.1016/j.bbabio.2007.11.010. Epub 2007 Dec 14.
9
Charge parameterization of the metal centers in cytochrome c oxidase.
J Comput Chem. 2008 Apr 15;29(5):753-67. doi: 10.1002/jcc.20835.
10
Mechanism and energetics of proton translocation by the respiratory heme-copper oxidases.
Biochim Biophys Acta. 2007 Oct;1767(10):1200-14. doi: 10.1016/j.bbabio.2007.06.008. Epub 2007 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验