Suppr超能文献

脑控机器人。

Brain controlled robots.

作者信息

Kawato Mitsuo

机构信息

Japan Science and Technology Agency ICORP, Computational Brain Project, and ATR Computational Neuroscience Laboratories, Hikaridai 2-2-2, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan.

出版信息

HFSP J. 2008 Jun;2(3):136-42. doi: 10.2976/1.2931144. Epub 2008 May 23.

Abstract

In January 2008, Duke University and the Japan Science and Technology Agency (JST) publicized their successful control of a brain-machine interface for a humanoid robot by a monkey brain across the Pacific Ocean. The activities of a few hundred neurons were recorded from a monkey's motor cortex in Miguel Nicolelis's lab at Duke University, and the kinematic features of monkey locomotion on a treadmill were decoded from neural firing rates in real time. The decoded information was sent to a humanoid robot, CB-i, in ATR Computational Neuroscience Laboratories located in Kyoto, Japan. This robot was developed by the JST International Collaborative Research Project (ICORP) as the "Computational Brain Project." CB-i's locomotion-like movement was video-recorded and projected on a screen in front of the monkey. Although the bidirectional communication used a conventional Internet connection, its delay was suppressed below one over several seconds, partly due to a video-streaming technique, and this encouraged the monkey's voluntary locomotion and influenced its brain activity. This commentary introduces the background and future directions of the brain-controlled robot.

摘要

2008年1月,杜克大学和日本科学技术振兴机构(JST)公布了它们成功实现一只猴子大脑通过太平洋对一个类人机器人进行脑机接口控制。在杜克大学米格尔·尼科莱利斯实验室中,从一只猴子的运动皮层记录了几百个神经元的活动,并根据神经放电率实时解码猴子在跑步机上运动的运动学特征。解码后的信息被发送到位于日本京都的ATR计算神经科学实验室的类人机器人CB-i。这个机器人是由JST国际合作研究项目(ICORP)作为“计算大脑项目”开发的。CB-i类似运动的动作被录像并投射到猴子面前的屏幕上。尽管双向通信使用的是传统互联网连接,但其延迟被抑制在几秒分之一以下,部分原因是采用了视频流技术,这促进了猴子的自主运动并影响了其大脑活动。本评论介绍了脑控机器人的背景和未来发展方向。

相似文献

1
Brain controlled robots.脑控机器人。
HFSP J. 2008 Jun;2(3):136-42. doi: 10.2976/1.2931144. Epub 2008 May 23.
4
Brain-Machine Interface-Based Rat-Robot Behavior Control.脑机接口大鼠机器人行为控制
Adv Exp Med Biol. 2019;1101:123-147. doi: 10.1007/978-981-13-2050-7_5.
10
Human-Robot Confluence: Toward a Humane Robotics.人机融合:迈向有人情味的机器人技术。
Cyberpsychol Behav Soc Netw. 2021 May;24(5):291-293. doi: 10.1089/cyber.2021.29215.gri.

本文引用的文献

6
Decoding the visual and subjective contents of the human brain.解读人类大脑的视觉及主观内容。
Nat Neurosci. 2005 May;8(5):679-85. doi: 10.1038/nn1444. Epub 2005 Apr 24.
7
Hierarchical Bayesian estimation for MEG inverse problem.脑磁图逆问题的分层贝叶斯估计
Neuroimage. 2004 Nov;23(3):806-26. doi: 10.1016/j.neuroimage.2004.06.037.
8
A Kendama Learning Robot Based on Bi-directional Theory.基于双向理论的肯得拉玛学习机器人
Neural Netw. 1996 Nov;9(8):1281-1302. doi: 10.1016/s0893-6080(96)00043-3.
9
Direct cortical control of 3D neuroprosthetic devices.3D神经假体装置的直接皮层控制
Science. 2002 Jun 7;296(5574):1829-32. doi: 10.1126/science.1070291.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验