Suppr超能文献

评估液滴和气泡在固体表面附着力的一般方法。

General methodology for evaluating the adhesion force of drops and bubbles on solid surfaces.

作者信息

Antonini C, Carmona F J, Pierce E, Marengo M, Amirfazli A

机构信息

Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8.

出版信息

Langmuir. 2009 Jun 2;25(11):6143-54. doi: 10.1021/la804099z.

Abstract

The shortcomings of the current formulation for calculating the adhesion force for drops and bubbles with noncircular contact lines are discussed. A general formulation to evaluate the adhesion force due to surface forces is presented. Also, a novel methodology, that is, IBAFA, image based adhesion force analysis, was developed to allow implementation of the general formulation. IBAFA is based on the use of multiple profile images of a drop. The images are analyzed (1) to accurately reconstruct the contact line shape, which is analytically represented by a Fourier cosine series, and (2) to measure contact angles at multiple locations along the contact line and determine the contact angle distribution based on a linear piecewise interpolation routine. The contact line shape reconstruction procedure was validated with both actual experiments and simulated experiments. The procedure for the evaluation of the adhesion force was tested using simulated experiments with synthetic drops of known shapes. A comparison with current methods showed that simplifying assumptions (e.g., elliptical contact line or linear contact angle distribution) used in these methods result in errors up to 76% in the estimated adhesion force. However, the drop adhesion force evaluated using IBAFA results in small errors on the order of 1%.

摘要

讨论了当前用于计算具有非圆形接触线的液滴和气泡粘附力公式的缺点。提出了一种评估表面力引起的粘附力的通用公式。此外,还开发了一种新颖的方法,即基于图像的粘附力分析(IBAFA),以实现该通用公式。IBAFA基于使用液滴的多个轮廓图像。对这些图像进行分析:(1)以准确重建接触线形状,该形状由傅里叶余弦级数进行解析表示;(2)沿接触线在多个位置测量接触角,并基于线性分段插值程序确定接触角分布。接触线形状重建程序通过实际实验和模拟实验进行了验证。使用已知形状的合成液滴进行模拟实验,对粘附力评估程序进行了测试。与当前方法的比较表明,这些方法中使用的简化假设(例如,椭圆形接触线或线性接触角分布)会导致估计的粘附力误差高达76%。然而,使用IBAFA评估的液滴粘附力产生的误差较小,约为1%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验