Université Paris Diderot, Sorbonne Paris Cité, Unit of Functional and Adaptive Biology, EAC 4413 CNRS, Paris, France.
Appl Environ Microbiol. 2013 Aug;79(15):4719-26. doi: 10.1128/AEM.00989-13. Epub 2013 May 31.
Trichoderma spp. are cosmopolitan soil fungi that are highly resistant to many toxic compounds. Here, we show that Trichoderma virens and T. reesei are tolerant to aromatic amines (AA), a major class of pollutants including the highly toxic pesticide residue 3,4-dichloroaniline (3,4-DCA). In a previous study, we provided proof-of-concept remediation experiments in which another soil fungus, Podospora anserina, detoxifies 3,4-DCA through its arylamine N-acetyltransferase (NAT), a xenobiotic-metabolizing enzyme that enables acetyl coenzyme A-dependent detoxification of AA. To assess whether the N-acetylation pathway enables AA tolerance in Trichoderma spp., we cloned and characterized NATs from T. virens and T. reesei. We characterized recombinant enzymes by determining their catalytic efficiencies toward several toxic AA. Through a complementary approach, we also demonstrate that both Trichoderma species efficiently metabolize 3,4-DCA. Finally, we provide evidence that NAT-independent transformation is solely (in T. virens) or mainly (in T. reesei) responsible for the observed removal of 3,4-DCA. We conclude that T. virens and, to a lesser extent, T. reesei likely utilize another, unidentified, metabolic pathway for the detoxification of AA aside from acetylation. This is the first molecular and functional characterization of AA biotransformation in Trichoderma spp. Given the potential of Trichoderma for cleanup of contaminated soils, these results reveal new possibilities in the fungal remediation of AA-contaminated soil.
木霉属真菌广泛分布于土壤中,对许多有毒化合物具有很强的抗性。在这里,我们表明绿色木霉和里氏木霉能够耐受芳香胺(AA),AA 是包括剧毒农药残留 3,4-二氯苯胺(3,4-DCA)在内的主要污染物类别。在之前的研究中,我们提供了概念验证修复实验的证据,即在另一种土壤真菌蛹虫草中,芳基胺 N-乙酰转移酶(NAT)通过其将 3,4-DCA 解毒,NAT 是一种外源性代谢酶,可使 AA 依赖乙酰辅酶 A 进行解毒。为了评估 N-乙酰化途径是否使木霉属能够耐受 AA,我们从绿色木霉和里氏木霉中克隆并鉴定了 NATs。我们通过确定它们对几种有毒 AA 的催化效率来鉴定重组酶。通过一种互补的方法,我们还证明了这两种木霉属物种都能有效地代谢 3,4-DCA。最后,我们提供的证据表明,NAT 独立的转化仅(在绿色木霉中)或主要(在里氏木霉中)负责观察到的 3,4-DCA 的去除。我们得出的结论是,除了乙酰化之外,绿色木霉(在一定程度上还有里氏木霉)可能还利用另一种未鉴定的代谢途径来解毒 AA。这是木霉属中 AA 生物转化的首次分子和功能特征描述。鉴于木霉属在污染土壤修复方面的潜力,这些结果为真菌修复 AA 污染土壤提供了新的可能性。