Suppr超能文献

植物相关真菌中异源生物代谢N-乙酰转移酶的同源物:古老酶家族的新功能。

Homologues of xenobiotic metabolizing N-acetyltransferases in plant-associated fungi: Novel functions for an old enzyme family.

作者信息

Karagianni Eleni P, Kontomina Evanthia, Davis Britton, Kotseli Barbara, Tsirka Theodora, Garefalaki Vasiliki, Sim Edith, Glenn Anthony E, Boukouvala Sotiria

机构信息

Democritus University of Thrace, Department of Molecular Biology and Genetics, Alexandroupolis 68100, Greece.

United States Department of Agriculture, Agricultural Research Service, Toxicology &Mycotoxin Research Unit, Richard B. Russell Research Center, 950 College Station Road, Athens, Georgia 30605, USA.

出版信息

Sci Rep. 2015 Aug 6;5:12900. doi: 10.1038/srep12900.

Abstract

Plant-pathogenic fungi and their hosts engage in chemical warfare, attacking each other with toxic products of secondary metabolism and defending themselves via an arsenal of xenobiotic metabolizing enzymes. One such enzyme is homologous to arylamine N-acetyltransferase (NAT) and has been identified in Fusarium infecting cereal plants as responsible for detoxification of host defence compound 2-benzoxazolinone. Here we investigate functional diversification of NAT enzymes in crop-compromising species of Fusarium and Aspergillus, identifying three groups of homologues: Isoenzymes of the first group are found in all species and catalyse reactions with acetyl-CoA or propionyl-CoA. The second group is restricted to the plant pathogens and is active with malonyl-CoA in Fusarium species infecting cereals. The third group generates minimal activity with acyl-CoA compounds that bind non-selectively to the proteins. We propose that fungal NAT isoenzymes may have evolved to perform diverse functions, potentially relevant to pathogen fitness, acetyl-CoA/propionyl-CoA intracellular balance and secondary metabolism.

摘要

植物病原真菌与其宿主展开化学战,利用次生代谢的有毒产物相互攻击,并通过一系列异源生物代谢酶进行自我防御。其中一种酶与芳胺N - 乙酰转移酶(NAT)同源,已在感染谷物植物的镰刀菌中被鉴定出,负责宿主防御化合物2 - 苯并恶唑啉酮的解毒。在此,我们研究了镰刀菌和曲霉菌中危害作物的物种中NAT酶的功能多样性,鉴定出三组同源物:第一组同工酶存在于所有物种中,催化与乙酰辅酶A或丙酰辅酶A的反应。第二组仅限于植物病原体,在感染谷物的镰刀菌物种中对丙二酰辅酶A具有活性。第三组对非选择性结合蛋白质的酰基辅酶A化合物产生最小活性。我们提出,真菌NAT同工酶可能已经进化以执行多种功能,这可能与病原体适应性、乙酰辅酶A/丙酰辅酶A细胞内平衡和次生代谢有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验