Suppr超能文献

作为计算蛋白质设计模板的X射线结构与核磁共振结构

X-ray vs. NMR structures as templates for computational protein design.

作者信息

Schneider Michael, Fu Xiaoran, Keating Amy E

机构信息

MIT Department of Biology, Cambridge, Massachusetts 02139, USA.

出版信息

Proteins. 2009 Oct;77(1):97-110. doi: 10.1002/prot.22421.

Abstract

Certain protein-design calculations involve using an experimentally determined high-resolution structure as a template to identify new sequences that can adopt the same fold. This approach has led to the successful design of many novel, well-folded, native-like proteins. Although any atomic-resolution structure can serve as a template in such calculations, most successful designs have used high-resolution crystal structures. Because there are many proteins for which crystal structures are not available, it is of interest whether nuclear magnetic resonance (NMR) templates are also appropriate. We have analyzed differences between using X-ray and NMR templates in side-chain repacking and design calculations. We assembled a database of 29 proteins for which both a high-resolution X-ray structure and an ensemble of NMR structures are available. Using these pairs, we compared the rotamericity, chi(1)-angle recovery, and native-sequence recovery of X-ray and NMR templates. We carried out design using RosettaDesign on both types of templates, and compared the energies and packing qualities of the resulting structures. Overall, the X-ray structures were better templates for use with Rosetta. However, for approximately 20% of proteins, a member of the reported NMR ensemble gave rise to designs with similar properties. Re-evaluating RosettaDesign structures with other energy functions indicated much smaller differences between the two types of templates. Ultimately, experiments are required to confirm the utility of particular X-ray and NMR templates. But our data suggest that the lack of a high-resolution X-ray structure should not preclude attempts at computational design if an NMR ensemble is available.

摘要

某些蛋白质设计计算涉及使用实验测定的高分辨率结构作为模板,以识别能够采用相同折叠方式的新序列。这种方法已成功设计出许多新颖的、折叠良好的、类似天然的蛋白质。尽管任何原子分辨率结构都可在此类计算中用作模板,但大多数成功的设计都使用了高分辨率晶体结构。由于有许多蛋白质尚无晶体结构,因此核磁共振(NMR)模板是否也适用就成了一个有趣的问题。我们分析了在侧链重新包装和设计计算中使用X射线模板和NMR模板之间的差异。我们组装了一个包含29种蛋白质的数据库,这些蛋白质既有高分辨率X射线结构,也有NMR结构集合。利用这些配对,我们比较了X射线模板和NMR模板的旋转异构体、χ(1)角恢复和天然序列恢复情况。我们使用RosettaDesign对这两种类型的模板进行设计,并比较了所得结构的能量和堆积质量。总体而言,X射线结构是与Rosetta配合使用的更好模板。然而,对于约20%的蛋白质,所报道的NMR结构集合中的一个成员产生了具有相似性质的设计。用其他能量函数重新评估RosettaDesign结构表明,这两种类型的模板之间的差异要小得多。最终,需要通过实验来确认特定X射线和NMR模板的实用性。但我们的数据表明,如果有NMR结构集合,缺乏高分辨率X射线结构不应妨碍进行计算设计的尝试。

相似文献

1
X-ray vs. NMR structures as templates for computational protein design.
Proteins. 2009 Oct;77(1):97-110. doi: 10.1002/prot.22421.
2
Core packing of well-defined X-ray and NMR structures is the same.
Protein Sci. 2022 Aug;31(8):e4373. doi: 10.1002/pro.4373.
3
Protein NMR structures refined with Rosetta have higher accuracy relative to corresponding X-ray crystal structures.
J Am Chem Soc. 2014 Feb 5;136(5):1893-906. doi: 10.1021/ja409845w. Epub 2014 Jan 23.
4
Homology modeling of larger proteins guided by chemical shifts.
Nat Methods. 2015 Aug;12(8):747-50. doi: 10.1038/nmeth.3437. Epub 2015 Jun 8.
5
Residue-level global and local ensemble-ensemble comparisons of protein domains.
Protein Sci. 2015 Sep;24(9):1528-42. doi: 10.1002/pro.2714. Epub 2015 Jun 22.
7
Improved technologies now routinely provide protein NMR structures useful for molecular replacement.
Structure. 2011 Jun 8;19(6):757-66. doi: 10.1016/j.str.2011.04.005.
8
Evaluating the quality of NMR structures by local density of protons.
Proteins. 2006 Mar 1;62(4):852-64. doi: 10.1002/prot.20811.
10
Analyses of protein cores reveal fundamental differences between solution and crystal structures.
Proteins. 2020 Sep;88(9):1154-1161. doi: 10.1002/prot.25884. Epub 2020 Mar 5.

引用本文的文献

1
Re-engineering of a carotenoid-binding protein based on NMR structure.
Protein Sci. 2024 Dec;33(12):e5216. doi: 10.1002/pro.5216.
2
Lactobacillus for ribosome peptide editing cancer.
Clin Transl Oncol. 2023 Jun;25(6):1522-1544. doi: 10.1007/s12094-022-03066-5. Epub 2023 Jan 24.
3
Core packing of well-defined X-ray and NMR structures is the same.
Protein Sci. 2022 Aug;31(8):e4373. doi: 10.1002/pro.4373.
5
The accuracy of protein structures in solution determined by AlphaFold and NMR.
Structure. 2022 Jul 7;30(7):925-933.e2. doi: 10.1016/j.str.2022.04.005. Epub 2022 May 9.
6
Analyses of protein cores reveal fundamental differences between solution and crystal structures.
Proteins. 2020 Sep;88(9):1154-1161. doi: 10.1002/prot.25884. Epub 2020 Mar 5.
7
Toward the Accuracy and Speed of Protein Side-Chain Packing: A Systematic Study on Rotamer Libraries.
J Chem Inf Model. 2020 Jan 27;60(1):410-420. doi: 10.1021/acs.jcim.9b00812. Epub 2019 Dec 31.
8
Computational Analysis of Energy Landscapes Reveals Dynamic Features That Contribute to Binding of Inhibitors to CFTR-Associated Ligand.
J Phys Chem B. 2019 Dec 12;123(49):10441-10455. doi: 10.1021/acs.jpcb.9b07278. Epub 2019 Nov 27.
9
EvoEF2: accurate and fast energy function for computational protein design.
Bioinformatics. 2020 Feb 15;36(4):1135-1142. doi: 10.1093/bioinformatics/btz740.
10
An overview of recent molecular dynamics applications as medicinal chemistry tools for the undruggable site challenge.
Medchemcomm. 2018 Apr 19;9(6):920-936. doi: 10.1039/c8md00166a. eCollection 2018 Jun 1.

本文引用的文献

1
The dead-end elimination theorem and its use in protein side-chain positioning.
Nature. 1992 Apr 9;356(6369):539-42. doi: 10.1038/356539a0.
4
Kemp elimination catalysts by computational enzyme design.
Nature. 2008 May 8;453(7192):190-5. doi: 10.1038/nature06879. Epub 2008 Mar 19.
5
De novo computational design of retro-aldol enzymes.
Science. 2008 Mar 7;319(5868):1387-91. doi: 10.1126/science.1152692.
6
High-resolution design of a protein loop.
Proc Natl Acad Sci U S A. 2007 Nov 6;104(45):17668-73. doi: 10.1073/pnas.0707977104. Epub 2007 Oct 30.
7
Computational design of antibody-affinity improvement beyond in vivo maturation.
Nat Biotechnol. 2007 Oct;25(10):1171-6. doi: 10.1038/nbt1336. Epub 2007 Sep 23.
8
De novo design of a single-chain diphenylporphyrin metalloprotein.
J Am Chem Soc. 2007 Sep 5;129(35):10732-40. doi: 10.1021/ja071199j. Epub 2007 Aug 10.
9
Progress in computational protein design.
Curr Opin Biotechnol. 2007 Aug;18(4):305-11. doi: 10.1016/j.copbio.2007.04.009. Epub 2007 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验