Suppr超能文献

近期分子动力学作为应对不可成药靶点挑战的药物化学工具的应用综述。

An overview of recent molecular dynamics applications as medicinal chemistry tools for the undruggable site challenge.

作者信息

Perricone Ugo, Gulotta Maria Rita, Lombino Jessica, Parrino Barbara, Cascioferro Stella, Diana Patrizia, Cirrincione Girolamo, Padova Alessandro

机构信息

Computational and Medicinal Chemistry Group , Fondazione Ri.MED , Via Bandiera 11 , 90133 Palermo , Italy . Email:

Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy.

出版信息

Medchemcomm. 2018 Apr 19;9(6):920-936. doi: 10.1039/c8md00166a. eCollection 2018 Jun 1.

Abstract

Molecular dynamics (MD) has become increasingly popular due to the development of hardware and software solutions and the improvement in algorithms, which allowed researchers to scale up calculations in order to speed them up. MD simulations are usually used to address protein folding issues or protein-ligand complex stability through energy profile analysis over time. In recent years, the development of new tools able to deeply explore a potential energy surface (PES) has allowed researchers to focus on the dynamic nature of the binding recognition process and binding-induced protein conformational changes. Moreover, modern approaches have been demonstrated to be effective and reliable in calculating some kinetic and thermodynamic parameters behind the host-guest recognition process. Starting from all of these considerations, several efforts have been made in order to integrate MD within the virtual screening process in drug discovery. Knowledge retrieved from MD can, in fact, be exploited as a starting point to build pharmacophores or docking constraints in the early stage of the screening campaign as well as to define key features, in order to unravel hidden binding modes and help the optimisation of the molecular structure of a lead compound. Based on these outcomes, researchers are nowadays using MD as an invaluable tool to discover and target previously considered undruggable binding sites, including protein-protein interactions and allosteric sites on a protein surface. As a matter of fact, the use of MD has been recognised as vital to the discovery of selective protein-protein interaction modulators. The use of a dynamic overview on how the host-guest recognition occurs and of the relative conformational modifications induced allows researchers to optimise small molecules and small peptides capable of tightly interacting within the cleft between two proteins. In this review, we aim to present the most recent applications of MD as an integrated tool to be used in the rational design of small molecules or small peptides able to modulate undruggable targets, such as allosteric sites and protein-protein interactions.

摘要

由于硬件和软件解决方案的发展以及算法的改进,分子动力学(MD)越来越受欢迎,这使得研究人员能够扩大计算规模以加快计算速度。MD模拟通常用于通过随时间的能量分布分析来解决蛋白质折叠问题或蛋白质 - 配体复合物的稳定性。近年来,能够深入探索势能面(PES)的新工具的开发使研究人员能够专注于结合识别过程的动态性质以及结合诱导的蛋白质构象变化。此外,现代方法已被证明在计算主客体识别过程背后的一些动力学和热力学参数方面是有效且可靠的。基于所有这些考虑,人们已经做出了一些努力,以便将MD整合到药物发现的虚拟筛选过程中。事实上,从MD中获取的知识可以在筛选活动的早期阶段用作构建药效团或对接约束的起点,以及定义关键特征,以揭示隐藏的结合模式并帮助优化先导化合物的分子结构。基于这些成果,研究人员如今将MD用作发现和靶向先前认为不可成药的结合位点的宝贵工具,包括蛋白质 - 蛋白质相互作用以及蛋白质表面的变构位点。事实上,MD的使用已被认为对于发现选择性蛋白质 - 蛋白质相互作用调节剂至关重要。对主客体识别如何发生以及诱导的相关构象修饰进行动态概述,使研究人员能够优化能够在两种蛋白质之间的裂隙内紧密相互作用的小分子和小肽。在本综述中,我们旨在介绍MD作为一种集成工具的最新应用,该工具可用于合理设计能够调节不可成药靶点(如变构位点和蛋白质 - 蛋白质相互作用)的小分子或小肽。

相似文献

10
Hidden allosteric sites and De-Novo drug design.隐藏变构位点与从头设计药物
Expert Opin Drug Discov. 2022 Mar;17(3):283-295. doi: 10.1080/17460441.2022.2017876. Epub 2021 Dec 21.

引用本文的文献

1
Location and Dynamics of Nymphaeol A in a Complex Membrane.睡莲醇A在复合膜中的位置与动态
Membranes (Basel). 2025 May 28;15(6):163. doi: 10.3390/membranes15060163.
3
Localization and Aggregation of Honokiol in the Lipid Membrane.厚朴酚在脂质膜中的定位与聚集。
Antioxidants (Basel). 2024 Aug 22;13(8):1025. doi: 10.3390/antiox13081025.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验