Suppr超能文献

四足动物牙齿和牙釉质的缺失:化石记录、遗传数据和形态适应。

Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations.

机构信息

Université Pierre & Marie Curie, UMR, Paris, France.

出版信息

J Anat. 2009 Apr;214(4):477-501. doi: 10.1111/j.1469-7580.2009.01060.x.

Abstract

Since their recruitment in the oral cavity, approximately 450 million years ago, teeth have been subjected to strong selective constraints due to the crucial role that they play in species survival. It is therefore quite surprising that the ability to develop functional teeth has subsequently been lost several times, independently, in various lineages. In this review, we concentrate our attention on tetrapods, the only vertebrate lineage in which several clades lack functional teeth from birth to adulthood. Indeed, in other lineages, teeth can be absent in adults but be functionally present in larvae and juveniles, can be absent in the oral cavity but exist in the pharyngeal region, or can develop on the upper jaw but be absent on the lower jaw. Here, we analyse the current data on toothless (edentate) tetrapod taxa, including information available on enamel-less species. Firstly, we provide an analysis of the dispersed and fragmentary morphological data published on the various living taxa concerned (and their extinct relatives) with the aim of tracing the origin of tooth or enamel loss, i.e. toads in Lissamphibia, turtles and birds in Sauropsida, and baleen whales, pangolins, anteaters, sloths, armadillos and aardvark in Mammalia. Secondly, we present current hypotheses on the genetic basis of tooth loss in the chicken and thirdly, we try to answer the question of how these taxa have survived tooth loss given the crucial importance of this tool. The loss of teeth (or only enamel) in all of these taxa was not lethal because it was always preceded in evolution by the pre-adaptation of a secondary tool (beak, baleens, elongated adhesive tongues or hypselodonty) useful for improving efficiency in food uptake. The positive selection of such secondary tools would have led to relaxed functional constraints on teeth and would have later compensated for the loss of teeth. These hypotheses raise numerous questions that will hopefully be answered in the near future.

摘要

自大约 4.5 亿年前在口腔中被招募以来,牙齿由于在物种生存中发挥着至关重要的作用,因此一直受到强烈的选择性约束。令人惊讶的是,随后在不同的谱系中,独立地多次失去了发育功能性牙齿的能力。在这篇综述中,我们将注意力集中在四足动物上,这是唯一一种从出生到成年都没有功能性牙齿的脊椎动物谱系。事实上,在其他谱系中,牙齿在成年时可能不存在,但在幼虫和幼体中具有功能性;可能在口腔中不存在,但存在于咽区;也可能在上颚发育,但在下颚不存在。在这里,我们分析了无齿(无齿)四足动物类群的现有数据,包括有关无釉质物种的信息。首先,我们对有关各种现存类群(及其已灭绝的亲属)的分散和零碎的形态学数据进行了分析,目的是追溯牙齿或釉质缺失的起源,即无尾两栖类中的蟾蜍、蜥形纲动物中的海龟和鸟类、以及鲸须鲸、穿山甲、食蚁兽、树懒、犰狳和土豚。其次,我们提出了关于鸡中牙齿缺失遗传基础的当前假说,第三,我们试图回答这些类群如何在牙齿这一重要工具缺失的情况下生存的问题。所有这些类群的牙齿(或仅釉质)缺失都不是致命的,因为在进化过程中,总是先出现了一种有助于提高食物摄取效率的次生工具(喙、鲸须、伸长的粘性舌头或高齿冠)的预适应。对这种次生工具的积极选择会导致对牙齿的功能约束放松,并会在以后弥补牙齿的缺失。这些假说提出了许多问题,希望在不久的将来能够得到回答。

相似文献

1
Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations.
J Anat. 2009 Apr;214(4):477-501. doi: 10.1111/j.1469-7580.2009.01060.x.
3
Molecular decay of enamel matrix protein genes in turtles and other edentulous amniotes.
BMC Evol Biol. 2013 Jan 23;13:20. doi: 10.1186/1471-2148-13-20.
4
Origin and evolution of gnathostome dentitions: a question of teeth and pharyngeal denticles in placoderms.
Biol Rev Camb Philos Soc. 2005 May;80(2):303-45. doi: 10.1017/s1464793104006682.
5
Molecular evolutionary analyses of tooth genes support sequential loss of enamel and teeth in baleen whales (Mysticeti).
Mol Phylogenet Evol. 2022 Jun;171:107463. doi: 10.1016/j.ympev.2022.107463. Epub 2022 Mar 28.
6
Evidence for a single loss of mineralized teeth in the common avian ancestor.
Science. 2014 Dec 12;346(6215):1254390. doi: 10.1126/science.1254390. Epub 2014 Dec 11.
7
Tooth Loss Precedes the Origin of Baleen in Whales.
Curr Biol. 2018 Dec 17;28(24):3992-4000.e2. doi: 10.1016/j.cub.2018.10.047. Epub 2018 Nov 29.
8
Phenogenetic drift in evolution: the changing genetic basis of vertebrate teeth.
Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):18063-8. doi: 10.1073/pnas.0509263102. Epub 2005 Dec 6.
9
Development and evolution of dentition pattern and tooth order in the skates and rays (batoidea; chondrichthyes).
PLoS One. 2015 Apr 15;10(4):e0122553. doi: 10.1371/journal.pone.0122553. eCollection 2015.
10
Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales.
Proc Biol Sci. 2011 Apr 7;278(1708):993-1002. doi: 10.1098/rspb.2010.1280. Epub 2010 Sep 22.

引用本文的文献

1
The metamorphic transition of the frog mouth: from tadpole keratinized mouthparts to adult teeth.
R Soc Open Sci. 2025 Sep 3;12(9):251196. doi: 10.1098/rsos.251196. eCollection 2025 Sep.
3
Six million years of vole dental evolution shaped by tooth development.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2505624122. doi: 10.1073/pnas.2505624122. Epub 2025 Jul 31.
4
Common developmental origins of beak shapes and evolution in theropods.
iScience. 2025 Mar 19;28(4):112246. doi: 10.1016/j.isci.2025.112246. eCollection 2025 Apr 18.
5
Bank vole genomics links determinate and indeterminate growth of teeth.
BMC Genomics. 2024 Oct 30;25(1):1000. doi: 10.1186/s12864-024-10901-2.
6
Cellular, Molecular, and Genetic Mechanisms of Avian Beak Development and Evolution.
Annu Rev Genet. 2024 Nov;58(1):433-454. doi: 10.1146/annurev-genet-111523-101929. Epub 2024 Nov 14.
8
Size and shape heterodonty in the early Permian synapsid Mesenosaurus efremovi.
J Anat. 2024 Jul;245(1):181-196. doi: 10.1111/joa.14034. Epub 2024 Mar 2.
9
Vole genomics links determinate and indeterminate growth of teeth.
bioRxiv. 2024 Jun 22:2023.12.18.572015. doi: 10.1101/2023.12.18.572015.
10
From teeth to pad: tooth loss and development of keratinous structures in sirenians.
Proc Biol Sci. 2023 Nov 29;290(2011):20231932. doi: 10.1098/rspb.2023.1932.

本文引用的文献

1
HIGHER-LEVEL RELATIONSHIPS OF THE RECENT EUTHERIAN ORDERS: MORPHOLOGICAL EVIDENCE.
Cladistics. 1986 Sep;2(4):257-287. doi: 10.1111/j.1096-0031.1986.tb00463.x.
2
Current knowledge of tooth development: patterning and mineralization of the murine dentition.
J Anat. 2009 Apr;214(4):502-15. doi: 10.1111/j.1469-7580.2008.01014.x.
3
Evolutionary and developmental origins of the vertebrate dentition.
J Anat. 2009 Apr;214(4):465-76. doi: 10.1111/j.1469-7580.2009.01053.x.
4
Hen's teeth with enamel cap: from dream to impossibility.
BMC Evol Biol. 2008 Sep 5;8:246. doi: 10.1186/1471-2148-8-246.
5
Dental agenesis: genetic and clinical perspectives.
J Oral Pathol Med. 2009 Jan;38(1):1-17. doi: 10.1111/j.1600-0714.2008.00699.x. Epub 2008 Sep 1.
6
Tooth agenesis: from molecular genetics to molecular dentistry.
J Dent Res. 2008 Jul;87(7):617-23. doi: 10.1177/154405910808700715.
7
A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders.
Nature. 2008 May 22;453(7194):515-8. doi: 10.1038/nature06865.
8
Dental eruption in afrotherian mammals.
BMC Biol. 2008 Mar 18;6:14. doi: 10.1186/1741-7007-6-14.
10
The oldest platypus and its bearing on divergence timing of the platypus and echidna clades.
Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1238-42. doi: 10.1073/pnas.0706385105. Epub 2008 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验