Boeggeman Elizabeth, Ramakrishnan Boopathy, Pasek Marta, Manzoni Maria, Puri Anu, Loomis Kristin H, Waybright Timothy J, Qasba Pradman K
Structural Glycobiology Section, CCR-Nanobiology Program, SAIC-Frederick, Inc., Frederick, Maryland 21702, USA.
Bioconjug Chem. 2009 Jun;20(6):1228-36. doi: 10.1021/bc900103p.
The Fc N-glycan chains of four therapeutic monoclonal antibodies (mAbs), namely, Avastin, Rituxan, Remicade, and Herceptin, released by PNGase F, show by MALDI analysis that these biantennary N-glycans are a mixture of G0, G1, and G2 glycoforms. The G0 glycoform has no galactose on the terminal GlcNAc residues, and the G1 and G2 glycoforms have one or two terminal galactose residues, respectively, while no N-glycan with terminal sialic acid residue is observed. We show here that under native conditions we can convert the N-glycans of these mAbs to a homogeneous population of G0 glycoform using beta1,4 galactosidase from Streptococcus pneumoniae. The G0 glycoforms of mAbs can be galactosylated with a modified galactose having a chemical handle at the C2 position, such as ketone or azide, using a mutant beta1,4-galactosyltransferase (beta1,4Gal-T1-Y289L). The addition of the modified galactose at a specific glycan residue of a mAb permits the coupling of a biomolecule that carries an orthogonal reactive group. The linking of a biotinylated or a fluorescent dye carrying derivatives selectively occurs with the modified galactose, C2-keto-Gal, at the heavy chain of these mAbs, without altering their antigen binding activities, as shown by indirect enzyme linked immunosorbent assay (ELISA) and fluorescence activated cell sorting (FACS) methods. Our results demonstrate that the linking of cargo molecules to mAbs via glycans could prove to be an invaluable tool for potential drug targeting by immunotherapeutic methods.
经肽-N-糖苷酶F(PNGase F)释放的四种治疗性单克隆抗体(mAb),即阿瓦斯汀(Avastin)、利妥昔单抗(Rituxan)、类克(Remicade)和赫赛汀(Herceptin)的Fc N-聚糖链,通过基质辅助激光解吸电离(MALDI)分析表明,这些双天线N-聚糖是G0、G1和G2糖型的混合物。G0糖型在末端N-乙酰葡糖胺(GlcNAc)残基上没有半乳糖,G1和G2糖型分别有一个或两个末端半乳糖残基,而未观察到带有末端唾液酸残基的N-聚糖。我们在此表明,在天然条件下,我们可以使用肺炎链球菌的β1,4-半乳糖苷酶将这些单克隆抗体的N-聚糖转化为均一的G0糖型群体。单克隆抗体的G0糖型可以使用突变型β1,4-半乳糖基转移酶(β1,4Gal-T1-Y289L),用在C2位置具有化学手柄(如酮或叠氮化物)的修饰半乳糖进行半乳糖基化。在单克隆抗体的特定聚糖残基处添加修饰半乳糖允许携带正交反应基团的生物分子进行偶联。如间接酶联免疫吸附测定(ELISA)和荧光激活细胞分选(FACS)方法所示,携带生物素化或荧光染料衍生物的连接选择性地与这些单克隆抗体重链上的修饰半乳糖C2-酮基半乳糖(C2-keto-Gal)发生,而不会改变它们的抗原结合活性。我们的结果表明,通过聚糖将货物分子与单克隆抗体连接可能被证明是免疫治疗方法潜在药物靶向的一种宝贵工具。