Deco Gustavo, Rolls Edmund T, Romo Ranulfo
Institució Catalana de Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Dept. of Technology, Computational Neuroscience, Passeig de Circumval.lació, 8, 08003 Barcelona, Spain.
Prog Neurobiol. 2009 May;88(1):1-16. doi: 10.1016/j.pneurobio.2009.01.006. Epub 2009 Jan 30.
The relatively random spiking times of individual neurons are a source of noise in the brain. We show that in a finite-sized cortical attractor network, this can be an advantage, for it leads to probabilistic behavior that is advantageous in decision-making, by preventing deadlock, and is important in signal detectability. We show how computations can be performed through stochastic dynamical effects, including the role of noise in enabling probabilistic jumping across barriers in the energy landscape describing the flow of the dynamics in attractor networks. The results obtained in neurophysiological studies of decision-making and signal detectability are modelled by the stochastical neurodynamics of integrate-and-fire networks of neurons with probabilistic neuronal spiking. We describe how these stochastic neurodynamical effects can be analyzed, and their importance in many aspects of brain function, including decision-making, memory recall, short-term memory, and attention.
单个神经元相对随机的放电时间是大脑中噪声的一个来源。我们表明,在一个有限大小的皮质吸引子网络中,这可能是一种优势,因为它会导致概率性行为,这种行为在决策中具有优势,可防止僵局,并且在信号可检测性方面很重要。我们展示了计算如何通过随机动力学效应来执行,包括噪声在使概率性跨越能量景观中的障碍方面的作用,该能量景观描述了吸引子网络中动力学的流动。在决策和信号可检测性的神经生理学研究中获得的结果由具有概率性神经元放电的积分发放神经元网络的随机神经动力学建模。我们描述了如何分析这些随机神经动力学效应,以及它们在大脑功能的许多方面的重要性,包括决策、记忆回忆、短期记忆和注意力。