Suppr超能文献

紫膜的电致变色:离子强度依赖性。

Electrodichroism of purple membrane: ionic strength dependence.

出版信息

Biophys J. 1986 May;49(5):1089-100. doi: 10.1016/S0006-3495(86)83737-7.

Abstract

The dichroism of purple membrane suspension was measured in dc and ac electric fields. From these measurements three parameters can be obtained: the permanent dipole moment, mu, the electrical polarizability, alpha, and the retinal angle, delta, (relative to the membrane normal). The functional dependence of the dichroism on the electric field is analyzed. There is a small decrease ( approximately 2 degrees ) in retinal angle going from dark adapted to the light adapted form. No measurable difference in mu, alpha, and delta was found under the photocycle. The dichroism was measured in two different salt solutions (KCl and CaCl(2)) in the range 0-10 mM. The retinal angle increases from 64 degrees to 68 degrees with increasing ionic strength going through a minimum. This is attributed to the changing (decreasing) inner electric field in the membrane. The polarizability, alpha, consists of two parts. One component is related to the polarization of the purple membrane and the second component to the ionic cloud. The second component decreases with ion concentration approximately as kappa(-3) (kappa is the Debye parameter) in agreement with a model calculation for the polarization of the ionic cloud. The origin of the slightly ionic strength dependent permanent dipole moment is not well understood.

摘要

紫色膜悬浮液的二色性在直流和交流电场中进行了测量。从这些测量中可以得到三个参数:永久偶极矩μ、介电常数α和视黄醛角度δ(相对于膜法线)。分析了二色性对电场的函数依赖性。从暗适应到光适应形式,视黄醛角度略有减小(约 2 度)。在光循环下,未发现μ、α和δ有可测量的差异。在两种不同的盐溶液(KCl 和 CaCl(2))中测量了二色性,范围为 0-10 mM。随着离子强度的增加,视黄醛角度从 64 度增加到 68 度,通过最小值。这归因于膜内变化(减小)的内电场。介电常数α由两部分组成。一部分与紫色膜的极化有关,第二部分与离子云有关。第二部分随着离子浓度的增加大约按 kappa(-3)(kappa 是德拜参数)减小,与离子云极化的模型计算一致。对稍微依赖于离子强度的永久偶极矩的起源还不太清楚。

相似文献

1
Electrodichroism of purple membrane: ionic strength dependence.
Biophys J. 1986 May;49(5):1089-100. doi: 10.1016/S0006-3495(86)83737-7.
2
Surface charge movements of purple membrane during light-dark adaptation.
Biophys J. 1986 Aug;50(2):205-11. doi: 10.1016/S0006-3495(86)83454-3.
3
Anisotropic electric properties of purple membrane and their change during the photoreaction cycle.
Biophys J. 1984 Mar;45(3):615-25. doi: 10.1016/S0006-3495(84)84200-9.
4
Polarizability of the ionic cloud around a charged membrane sheet.
Biophys Chem. 1985 Mar;21(3-4):243-8. doi: 10.1016/0301-4622(85)80011-9.
5
Macrodipoles. Unusual electric properties of biological macromolecules.
Biophys Chem. 1997 Jun 30;66(2-3):241-57. doi: 10.1016/s0301-4622(97)00060-4.
6
Interfacial electric polarizability of purple membranes in solution.
Biophys J. 1982 Oct;40(1):1-5. doi: 10.1016/S0006-3495(82)84451-2.
7
Electro-optical measurements on aqueous suspension of purple membrane from Halobacterium halobium.
Biophys J. 1983 Jul;43(1):5-11. doi: 10.1016/S0006-3495(83)84317-3.
8
Electrostatics and electrodynamics of bacteriorhodopsin.
Biophys J. 1996 Dec;71(6):3381-91. doi: 10.1016/S0006-3495(96)79531-0.
10
Electric parameters of Na+/K(+)-ATPase by measurements of the fluorescence-detected electric dichroism.
Biochim Biophys Acta. 1995 Sep 12;1231(2):181-8. doi: 10.1016/0005-2728(95)00082-t.

引用本文的文献

1
Long- and short-range electrostatic interactions affect the rheology of highly concentrated antibody solutions.
Pharm Res. 2009 Dec;26(12):2607-18. doi: 10.1007/s11095-009-9975-2. Epub 2009 Oct 1.
2
Measuring local surface charge densities in electrolyte solutions with a scanning force microscope.
Biophys J. 1992 Aug;63(2):578-82. doi: 10.1016/S0006-3495(92)81601-6.
3
Effect of membrane potential on the conformation of bacteriorhodopsin reconstituted in lipid vesicles.
Biophys J. 1988 Oct;54(4):747-50. doi: 10.1016/S0006-3495(88)83011-X.
4
Electrostatics and electrodynamics of bacteriorhodopsin.
Biophys J. 1996 Dec;71(6):3381-91. doi: 10.1016/S0006-3495(96)79531-0.

本文引用的文献

1
Polarizability of the ionic cloud around a charged membrane sheet.
Biophys Chem. 1985 Mar;21(3-4):243-8. doi: 10.1016/0301-4622(85)80011-9.
2
Orientation of membrane fragments by electric field.
Biochim Biophys Acta. 1980 Jun 6;598(3):429-36. doi: 10.1016/0005-2736(80)90023-1.
3
Dipoles of the alpha-helix and beta-sheet: their role in protein folding.
Nature. 1981 Dec 10;294(5841):532-6. doi: 10.1038/294532a0.
4
Interfacial electric polarizability of purple membranes in solution.
Biophys J. 1982 Oct;40(1):1-5. doi: 10.1016/S0006-3495(82)84451-2.
5
Bacteriorhodopsin is an inside-out protein.
Proc Natl Acad Sci U S A. 1980 Oct;77(10):5894-8. doi: 10.1073/pnas.77.10.5894.
6
Peptide-chain secondary structure of bacteriorhodopsin.
Biophys J. 1983 Jul;43(1):81-9. doi: 10.1016/S0006-3495(83)84326-4.
7
Electro-optical measurements on aqueous suspension of purple membrane from Halobacterium halobium.
Biophys J. 1983 Jul;43(1):5-11. doi: 10.1016/S0006-3495(83)84317-3.
8
Electric dichroism in the purple membrane of Halobacterium halobium.
Biophys J. 1981 Feb;33(2):263-8. doi: 10.1016/S0006-3495(81)84887-4.
9
Light activates rotations of bacteriorhodopsin in the purple membrane.
Biophys J. 1984 Jun;45(6):1039-49. doi: 10.1016/S0006-3495(84)84251-4.
10
Anisotropic electric properties of purple membrane and their change during the photoreaction cycle.
Biophys J. 1984 Mar;45(3):615-25. doi: 10.1016/S0006-3495(84)84200-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验