Porschke D
Max Planck Institut für Biophysikalische Chemie, Göttingen, Germany.
Biophys J. 1996 Dec;71(6):3381-91. doi: 10.1016/S0006-3495(96)79531-0.
The stationary electric dichroism of bacteriorhodopsin is in qualitative, but not quantitative, agreement with the orientation function for disks having a permanent dipole directed perpendicular to the plane and an induced dipole in the plane. Fits of the orientation function to data measured at low field strengths demonstrate: an increase of the permanent dipole moment mu with the square of the disk radius r2, whereas the polarizability alpha increases with r4; the ionic strength dependence is small for mu and clearly stronger for alpha; the permanent dipole moment is 4x10(6) D at r = 0.5 micron. According to the risetime constants, the induced dipole does not saturate and increases to 4x10(8) D at 40 kV/cm and r = 0.5 micron. The data indicate that the permanent dipole is not of some interfacial character but is due to a real assymetry of the charge distribution. The experimental dipole moment per protein monomer is approximately 55 D, whereas calculations based on the structure of Grigorieff et al. (Grigorieff, N., T.A. Ceska, K.H. Downing, J.M. Baldwin, and R. Henderson. 1996. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259:393-421) provide a dipole moment of approximately 570 D. The difference is probably due to a nonsymmetric distribution of charged lipid residues. It is concluded that experimental dipole moments reflect the mu-potential at the plane of shear for rotational diffusion, in analogy to the sigma-potential used for translational diffusion. It is suggested that the permanent dipole of bacteriorhodopsin supports proton transport by attraction of protons inside and repulsion of protons outside of the cell. Dichroism rise curves at field strengths between E = 150 and 800 V/cm reveal an exponential component with time constants tau 3r in the range between 1 and 40 ms, which is not found in Brownian dynamics simulations on a disk structure using hydrodynamic and electric parameters characteristic of bacteriorhodopsin disks. The experimental data suggest that this process reflects a cooperative change of the bacteriorhodopsin structure, which is induced already at a remarkably low field strength of approximately 150 V/cm.
细菌视紫红质的稳态电二色性在定性上与具有垂直于平面的永久偶极子和平面内感应偶极子的圆盘的取向函数一致,但在定量上不一致。将取向函数拟合到低场强下测量的数据表明:永久偶极矩μ随圆盘半径r的平方r²增加,而极化率α随r的四次方r⁴增加;μ对离子强度的依赖性较小,而α对离子强度的依赖性明显更强;在r = 0.5微米时,永久偶极矩为4×10⁶ D。根据上升时间常数,感应偶极子不饱和,在40 kV/cm和r = 0.5微米时增加到4×10⁸ D。数据表明,永久偶极子不是某种界面性质,而是由于电荷分布的实际不对称性。每个蛋白质单体的实验偶极矩约为55 D,而基于格里戈列夫等人(格里戈列夫,N.,T.A.切斯卡,K.H.唐宁,J.M.鲍德温和R.亨德森。1996年。细菌视紫红质结构的电子晶体学精修。《分子生物学杂志》259:393 - 421)的结构计算得出的偶极矩约为570 D。差异可能是由于带电脂质残基的不对称分布。得出的结论是,实验偶极矩反映了旋转扩散时剪切平面处的μ电位,类似于用于平移扩散的σ电位。有人提出,细菌视紫红质的永久偶极子通过吸引细胞内的质子和排斥细胞外的质子来支持质子运输。在E = 150至800 V/cm场强下的二色性上升曲线显示出一个指数成分,其时间常数τ₃r在1至40毫秒范围内,这在使用细菌视紫红质圆盘的流体动力学和电学参数对圆盘结构进行的布朗动力学模拟中未发现。实验数据表明,这个过程反映了细菌视紫红质结构的协同变化,这种变化在约150 V/cm的极低场强下就已被诱导。