Suppr超能文献

利用连通性信息估计广义质量作用模型的参数。

Estimating parameters for generalized mass action models with connectivity information.

作者信息

Ko Chih-Lung, Voit Eberhard O, Wang Feng-Sheng

机构信息

Department of Chemical Engineering, National Chung Cheng University, Chiayi, Taiwan.

出版信息

BMC Bioinformatics. 2009 May 11;10:140. doi: 10.1186/1471-2105-10-140.

Abstract

BACKGROUND

Determining the parameters of a mathematical model from quantitative measurements is the main bottleneck of modelling biological systems. Parameter values can be estimated from steady-state data or from dynamic data. The nature of suitable data for these two types of estimation is rather different. For instance, estimations of parameter values in pathway models, such as kinetic orders, rate constants, flux control coefficients or elasticities, from steady-state data are generally based on experiments that measure how a biochemical system responds to small perturbations around the steady state. In contrast, parameter estimation from dynamic data requires time series measurements for all dependent variables. Almost no literature has so far discussed the combined use of both steady-state and transient data for estimating parameter values of biochemical systems.

RESULTS

In this study we introduce a constrained optimization method for estimating parameter values of biochemical pathway models using steady-state information and transient measurements. The constraints are derived from the flux connectivity relationships of the system at the steady state. Two case studies demonstrate the estimation results with and without flux connectivity constraints. The unconstrained optimal estimates from dynamic data may fit the experiments well, but they do not necessarily maintain the connectivity relationships. As a consequence, individual fluxes may be misrepresented, which may cause problems in later extrapolations. By contrast, the constrained estimation accounting for flux connectivity information reduces this misrepresentation and thereby yields improved model parameters.

CONCLUSION

The method combines transient metabolic profiles and steady-state information and leads to the formulation of an inverse parameter estimation task as a constrained optimization problem. Parameter estimation and model selection are simultaneously carried out on the constrained optimization problem and yield realistic model parameters that are more likely to hold up in extrapolations with the model.

摘要

背景

从定量测量中确定数学模型的参数是生物系统建模的主要瓶颈。参数值可以从稳态数据或动态数据中估计。这两种类型估计所需的合适数据的性质有很大不同。例如,从稳态数据估计途径模型中的参数值,如动力学级数、速率常数、通量控制系数或弹性,通常基于测量生化系统在稳态附近对小扰动如何响应的实验。相比之下,从动态数据进行参数估计需要对所有因变量进行时间序列测量。到目前为止,几乎没有文献讨论过结合使用稳态和瞬态数据来估计生化系统的参数值。

结果

在本研究中,我们引入了一种约束优化方法,用于使用稳态信息和瞬态测量来估计生化途径模型的参数值。这些约束来自系统在稳态时的通量连通性关系。两个案例研究展示了有无通量连通性约束时的估计结果。来自动态数据的无约束最优估计可能很好地拟合实验,但它们不一定能维持连通性关系。因此,个别通量可能被错误表示,这可能在后续外推中导致问题。相比之下,考虑通量连通性信息的约束估计减少了这种错误表示,从而产生了改进的模型参数。

结论

该方法结合了瞬态代谢谱和稳态信息,并将逆参数估计任务表述为一个约束优化问题。在约束优化问题上同时进行参数估计和模型选择,得到更有可能在模型外推中成立的现实模型参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验