Norman Leann L, Stroka Kimberly, Aranda-Espinoza Helim
Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA.
Tissue Eng Part B Rev. 2009 Sep;15(3):291-305. doi: 10.1089/ten.TEB.2009.0114.
Complete axon regeneration after trauma or disease is largely unsuccessful in the central nervous system. With the fast developing advances in tissue engineering and biomaterials, many investigations have identified promising approaches for guiding axonal extension. This review highlights a variety of these approaches and describes the biomaterial properties and signaling mechanisms involved in the fabrication of optimal guidance platforms. The vast majority of axonal regeneration approaches limit themselves to observe how axons elongate and migrate in response to signaling molecules presented on the substrate materials, or more recently, in response to different chemical and mechanical substrate properties. Many of these studies are encouraging in the hope of regenerating axons after disease or injury; however, numerous barriers remain. Here we illustrate the need to optimize a permissive heterogeneous environment for axon elongation using tissue engineering approaches and a thorough understanding of the mechanical properties of the substrate, mechanotaxis, and both attractive and repulsive signaling mechanisms.
在中枢神经系统中,创伤或疾病后轴突的完全再生基本上是不成功的。随着组织工程和生物材料的快速发展,许多研究已经确定了引导轴突延伸的有前景的方法。本综述重点介绍了这些方法中的多种方法,并描述了参与构建最佳引导平台的生物材料特性和信号传导机制。绝大多数轴突再生方法仅限于观察轴突如何响应底物材料上呈现的信号分子,或者最近,如何响应不同的化学和机械底物特性而伸长和迁移。这些研究中的许多都令人鼓舞,有望在疾病或损伤后使轴突再生;然而,仍然存在许多障碍。在这里,我们说明了使用组织工程方法以及对底物的机械特性、机械趋化性以及吸引和排斥信号传导机制的透彻理解来优化允许轴突伸长的异质环境的必要性。