Suppr超能文献

生物分子的溶剂化动力学:建模与太赫兹实验

Solvation dynamics of biomolecules: modeling and terahertz experiments.

作者信息

Leitner David M, Gruebele Martin, Havenith Martina

出版信息

HFSP J. 2008 Dec;2(6):314-23. doi: 10.2976/1.2976661. Epub 2008 Sep 15.

Abstract

The role of water in biomolecule dynamics has attracted much interest over the past decade, due in part to new probes of biomolecule-water interactions and developments in molecular simulations. Terahertz (THz) spectroscopy, among the most recent experimental methods brought to bear on this problem, is able to detect even small solute induced changes of the collective water network dynamics at the biomolecule-water interface. THz measurements reveal that proteins influence up to 1000 water molecules in their surroundings, and that even small saccharides influence the dynamics of hundreds of surrounding water molecules. The THz spectrum of a protein is sensitive to mutation and depends on the surface charge and flexibility of the protein. Influence on the solvation shell appears most pronounced for native wildtype proteins and decreases upon partial unfolding or mutation. THz spectra of solvated saccharides reveal that the number of water molecules coupled dynamically to a saccharide, forming a dynamical hydration shell around it, is related to the number of exposed oxygen atoms on the solute. The thickness of this layer appears correlated with the bioprotection efficiency of the saccharide. All findings support the thesis of a long-range dynamic coupling between biomolecule and solvent.

摘要

在过去十年中,水在生物分子动力学中的作用引起了广泛关注,部分原因是生物分子与水相互作用的新探针以及分子模拟技术的发展。太赫兹(THz)光谱作为解决这一问题的最新实验方法之一,能够检测到生物分子 - 水界面处集体水网络动力学中即使是由溶质引起的微小变化。太赫兹测量结果表明,蛋白质会影响其周围多达1000个水分子,即使是小分子糖类也会影响数百个周围水分子的动力学。蛋白质的太赫兹光谱对突变敏感,并且取决于蛋白质的表面电荷和柔韧性。对溶剂化层的影响在天然野生型蛋白质中最为明显,而在部分展开或突变时会减弱。溶剂化糖类的太赫兹光谱表明,动态耦合到糖类并在其周围形成动态水合层的水分子数量与溶质上暴露的氧原子数量有关。这一层的厚度似乎与糖类的生物保护效率相关。所有这些发现都支持生物分子与溶剂之间存在远程动态耦合的观点。

相似文献

1
Solvation dynamics of biomolecules: modeling and terahertz experiments.
HFSP J. 2008 Dec;2(6):314-23. doi: 10.2976/1.2976661. Epub 2008 Sep 15.
3
Solute-induced retardation of water dynamics probed directly by terahertz spectroscopy.
Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12301-6. doi: 10.1073/pnas.0604897103. Epub 2006 Aug 8.
8
An extended dynamical hydration shell around proteins.
Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20749-52. doi: 10.1073/pnas.0709207104. Epub 2007 Dec 19.
10
Rattling in the cage: ions as probes of sub-picosecond water network dynamics.
J Am Chem Soc. 2009 Dec 30;131(51):18512-7. doi: 10.1021/ja9083545.

引用本文的文献

1
Water-protein interactions as a driver of phase separation, biology, and disease.
Biophys J. 2024 Nov 19;123(22):3859-3862. doi: 10.1016/j.bpj.2024.10.010. Epub 2024 Oct 15.
2
The heterogeneity of aqueous solutions: the current situation in the context of experiment and theory.
Front Chem. 2024 Sep 26;12:1456533. doi: 10.3389/fchem.2024.1456533. eCollection 2024.
3
Water determines the intramolecular dynamics of proteins. En example of bovine serum albumin.
Front Chem. 2024 Jul 25;12:1444448. doi: 10.3389/fchem.2024.1444448. eCollection 2024.
4
Dynamical Transition in Dehydrated Proteins.
J Phys Chem Lett. 2024 Apr 4;15(13):3581-3590. doi: 10.1021/acs.jpclett.3c03584. Epub 2024 Mar 25.
5
Terahertz spectroscopy as a method for investigation of hydration shells of biomolecules.
Biophys Rev. 2023 Sep 7;15(5):833-849. doi: 10.1007/s12551-023-01131-z. eCollection 2023 Oct.
7
In Situ Observation of the Structure of Crystallizing Magnesium Sulfate Heptahydrate Solutions with Terahertz Transmission Spectroscopy.
Cryst Growth Des. 2022 Jun 1;22(6):3961-3972. doi: 10.1021/acs.cgd.2c00352. Epub 2022 May 20.
8
The origin and impact of bound water around intrinsically disordered proteins.
Biophys J. 2022 Feb 15;121(4):540-551. doi: 10.1016/j.bpj.2022.01.011. Epub 2022 Jan 21.
9
Cellular effects of terahertz waves.
J Biomed Opt. 2021 Sep;26(9). doi: 10.1117/1.JBO.26.9.090902.
10
Detection of single-base mutation of DNA oligonucleotides with different lengths by terahertz attenuated total reflection microfluidic cell.
Biomed Opt Express. 2020 Aug 31;11(9):5362-5372. doi: 10.1364/BOE.400487. eCollection 2020 Sep 1.

本文引用的文献

2
Real-time detection of protein-water dynamics upon protein folding by terahertz absorption spectroscopy.
Angew Chem Int Ed Engl. 2008;47(34):6486-9. doi: 10.1002/anie.200802281.
3
Cell water dynamics on multiple time scales.
Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6266-71. doi: 10.1073/pnas.0709585105. Epub 2008 Apr 24.
4
Energy flow in proteins.
Annu Rev Phys Chem. 2008;59:233-59. doi: 10.1146/annurev.physchem.59.032607.093606.
7
Protein sequence- and pH-dependent hydration probed by terahertz spectroscopy.
J Am Chem Soc. 2008 Feb 27;130(8):2374-5. doi: 10.1021/ja0746520. Epub 2008 Feb 5.
8
An extended dynamical hydration shell around proteins.
Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20749-52. doi: 10.1073/pnas.0709207104. Epub 2007 Dec 19.
9
Dielectric relaxation of aqueous solutions of hydrophilic versus amphiphilic peptides.
J Phys Chem B. 2008 Jan 10;112(1):179-86. doi: 10.1021/jp073440m. Epub 2007 Dec 11.
10
Applications of terahertz spectroscopy in biosystems.
Chemphyschem. 2007 Dec 3;8(17):2412-31. doi: 10.1002/cphc.200700332.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验