Lehrstuhl für Physikalische Chemie II, Ruhr Universität , 44801 Bochum, Germany.
J Am Chem Soc. 2014 Sep 17;136(37):12800-7. doi: 10.1021/ja504441h. Epub 2014 Sep 2.
In life science, water is the ubiquitous solvent, sometimes even called the "matrix of life". There is increasing experimental and theoretical evidence that solvation water is not a passive spectator in biomolecular processes. New experimental techniques can quantify how water interacts with biomolecules and, in doing so, differs from "bulk" water. Terahertz (THz) absorption spectroscopy has turned out to be a powerful tool to study (bio)molecular hydration. The main concepts that have been developed in the recent years to describe the underlying solute-induced sub-picosecond dynamics of the hydration shell are discussed herein. Moreover, we highlight recent findings that show the significance of hydrogen bond dynamics for the function of antifreeze proteins and for molecular recognition. In all of these examples, a gradient of water motion toward functional sites of proteins is observed, the so-called "hydration funnel". By means of molecular dynamics simulations, we provide new evidence for a specific water-protein coupling as the cause of the observed dynamical heterogeneity. The efficiency of the coupling at THz frequencies is explained in terms of a two-tier (short- and long-range) solute-solvent interaction.
在生命科学中,水是无处不在的溶剂,有时甚至被称为“生命的基质”。越来越多的实验和理论证据表明,溶剂化水在生物分子过程中并非是一个被动的旁观者。新的实验技术可以定量地研究水与生物分子的相互作用,以及它与“体相”水的区别。太赫兹(THz)吸收光谱已成为研究(生物)分子水合作用的有力工具。本文讨论了近年来为描述溶剂诱导的水合壳亚皮秒动力学的基本概念。此外,我们还强调了最近的发现,这些发现表明氢键动力学对于抗冻蛋白功能和分子识别的重要性。在所有这些例子中,都观察到了水向蛋白质功能部位的运动梯度,即所谓的“水合漏斗”。通过分子动力学模拟,我们为观察到的动力学异质性的特定水-蛋白偶联提供了新的证据。根据溶质-溶剂相互作用的两层(短程和长程)模型,解释了在太赫兹频率下的偶联效率。