Xu Yao, Havenith Martina
Lehrstuhl für Physikalische Chemie II, Ruhr Universität, 44801 Bochum, Germany.
J Chem Phys. 2015 Nov 7;143(17):170901. doi: 10.1063/1.4934504.
Terahertz (THz) spectroscopy has turned out to be a powerful tool which is able to shed new light on the role of water in biomolecular processes. The low frequency spectrum of the solvated biomolecule in combination with MD simulations provides deep insights into the collective hydrogen bond dynamics on the sub-ps time scale. The absorption spectrum between 1 THz and 10 THz of solvated biomolecules is sensitive to changes in the fast fluctuations of the water network. Systematic studies on mutants of antifreeze proteins indicate a direct correlation between biological activity and a retardation of the (sub)-ps hydration dynamics at the protein binding site, i.e., a "hydration funnel." Kinetic THz absorption studies probe the temporal changes of THz absorption during a biological process, and give access to the kinetics of the coupled protein-hydration dynamics. When combined with simulations, the observed results can be explained in terms of a two-tier model involving a local binding and a long range influence on the hydration bond dynamics of the water around the binding site that highlights the significance of the changes in the hydration dynamics at recognition site for biomolecular recognition. Water is shown to assist molecular recognition processes.
太赫兹(THz)光谱已成为一种强大的工具,能够为水在生物分子过程中的作用带来新的启示。溶剂化生物分子的低频光谱与分子动力学(MD)模拟相结合,可深入了解亚皮秒时间尺度上的集体氢键动力学。溶剂化生物分子在1太赫兹至10太赫兹之间的吸收光谱对水网络快速波动的变化很敏感。对抗冻蛋白突变体的系统研究表明,生物活性与蛋白质结合位点(即“水化漏斗”)处(亚)皮秒级水化动力学的延迟之间存在直接关联。太赫兹吸收动力学研究探测生物过程中太赫兹吸收的时间变化,并能够获取蛋白质 - 水化耦合动力学的动力学信息。当与模拟相结合时,观察到的结果可以用一个两层模型来解释,该模型涉及局部结合以及对结合位点周围水的水化键动力学的长程影响,突出了识别位点水化动力学变化对生物分子识别的重要性。研究表明水有助于分子识别过程。