Rawlings Andrea E, Bramble Jonathan P, Tang Anna A S, Somner Lori A, Monnington Amy E, Cooke David J, McPherson Michael J, Tomlinson Darren C, Staniland Sarah S
Department , of Chemistry , The University of Sheffield , Sheffield , UK . Email:
Faculty of Biological , Sciences , The University of Leeds , Leeds , UK.
Chem Sci. 2015 Oct 1;6(10):5586-5594. doi: 10.1039/c5sc01472g. Epub 2015 Jun 30.
Adhirons are robust, well expressing, peptide display scaffold proteins, developed as an effective alternative to traditional antibody binding proteins for highly specific molecular recognition applications. This paper reports for the first time the use of these versatile proteins for material binding, and as tools for controlling material synthesis on the nanoscale. A phage library of Adhirons, each displaying two variable binding loops, was screened to identify specific proteins able to interact with [100] faces of cubic magnetite nanoparticles. The selected variable regions display a strong preference for basic residues such as lysine. Molecular dynamics simulations of amino acid adsorption onto a [100] magnetite surface provides a rationale for these interactions, with the lowest adsorption energy observed with lysine. These proteins direct the shape of the forming nanoparticles towards a cubic morphology in room temperature magnetite precipitation reactions, in stark contrast to the high temperature, harsh reaction conditions currently used to produce cubic nanoparticles. These effects demonstrate the utility of the selected Adhirons as novel magnetite mineralization control agents using ambient aqueous conditions. The approach we outline with artificial protein scaffolds has the potential to develop into a toolkit of novel additives for wider nanomaterial fabrication.
Adhirons是一种强大的、表达良好的肽展示支架蛋白,作为传统抗体结合蛋白的有效替代品而开发,用于高度特异性分子识别应用。本文首次报道了这些多功能蛋白在材料结合方面的应用,以及作为在纳米尺度上控制材料合成的工具。对每个展示两个可变结合环的Adhirons噬菌体文库进行筛选,以鉴定能够与立方磁铁矿纳米颗粒的[100]面相互作用的特异性蛋白。所选可变区对赖氨酸等碱性残基表现出强烈偏好。氨基酸吸附到[100]磁铁矿表面的分子动力学模拟为这些相互作用提供了理论依据,赖氨酸的吸附能最低。在室温磁铁矿沉淀反应中,这些蛋白将形成的纳米颗粒的形状导向立方形态,这与目前用于生产立方纳米颗粒的高温、苛刻反应条件形成鲜明对比。这些效应证明了所选Adhirons作为使用环境水性条件的新型磁铁矿矿化控制剂的实用性。我们用人工蛋白支架概述的方法有可能发展成为一套用于更广泛纳米材料制造的新型添加剂工具包。