GEMSEC - Genetically Engineered Materials Science and Engineering Center, Materials Science and Engineering Department, University of Washington, Seattle, WA 98195-2120, USA.
J Colloid Interface Sci. 2012 Jan 1;365(1):97-102. doi: 10.1016/j.jcis.2011.09.006. Epub 2011 Sep 10.
This study constitutes a demonstration of the biological route to controlled nano-fabrication via modular multi-functional inorganic-binding peptides. Specifically, we use gold- and silica-binding peptide sequences, fused into a single molecule via a structural peptide spacer, to assemble pre-synthesized gold nanoparticles on silica surface, as well as to synthesize nanometallic particles in situ on the peptide-patterned regions. The resulting film-like gold nanoparticle arrays with controlled spatial organization are characterized by various microscopy and spectroscopy techniques. The described bio-enabled, single-step synthetic process offers many advantages over conventional approaches for surface modifications, self-assembly and device fabrication due to the peptides' modularity, inherent biocompatibility, material specificity and catalytic activity in aqueous environments. Our results showcase the potential of artificially-derived peptides to play a key role in simplifying the assembly and synthesis of multi-material nano-systems in environmentally benign processes.
这项研究展示了通过模块化多功能无机结合肽来实现可控纳米制造的生物途径。具体来说,我们使用金和硅结合肽序列,通过结构肽间隔物融合到单个分子中,将预先合成的金纳米粒子组装在二氧化硅表面上,以及在肽图案化区域原位合成纳米金属颗粒。通过各种显微镜和光谱技术对具有受控空间组织的所得类膜金纳米粒子阵列进行了表征。与传统的表面修饰、自组装和器件制造方法相比,由于肽的模块化、固有生物相容性、材料特异性和在水相环境中的催化活性,所描述的生物启用的单步合成过程具有许多优势。我们的结果展示了人工衍生肽在简化环境友好型过程中多材料纳米系统的组装和合成方面发挥关键作用的潜力。