Suppr超能文献

细胞色素P450的虚拟筛选:机器学习过滤器的成功应用

Virtual screening for cytochromes p450: successes of machine learning filters.

作者信息

Burton Julien, Ijjaali Ismail, Petitet François, Michel André, Vercauteren Daniel P

机构信息

Laboratoire de Physico-Chimie Informatique, Groupe de Chimie Physique, Théorique et Structurale, University of Namur, 61 rue de Bruxelles, Namur, Belgium.

出版信息

Comb Chem High Throughput Screen. 2009 May;12(4):369-82. doi: 10.2174/138620709788167935.

Abstract

Cytochromes P450 (CYPs) are crucial targets when predicting the ADME properties (absorption, distribution, metabolism, and excretion) of drugs in development. Particularly, CYPs mediated drug-drug interactions are responsible for major failures in the drug design process. Accurate and robust screening filters are thus needed to predict interactions of potent compounds with CYPs as early as possible in the process. In recent years, more and more 3D structures of various CYP isoforms have been solved, opening the gate of accurate structure-based studies of interactions. Nevertheless, the ligand-based approach still remains popular. This success can be explained by the growing number of available data and the satisfying performances of existing machine learning (ML) methods. The aim of this contribution is to give an overview of the recent achievements in ML applications to CYP datasets. Particularly, popular methods such as support vector machine, decision trees, artificial neural networks, k-nearest neighbors, and partial least squares will be compared as well as the quality of the datasets and the descriptors used. Consensus of different methods will also be discussed. Often reaching 90% of accuracy, the models will be analyzed to highlight the key descriptors permitting the good prediction of CYPs binding.

摘要

细胞色素P450(CYPs)是预测正在研发药物的ADME特性(吸收、分布、代谢和排泄)时的关键靶点。特别是,CYPs介导的药物-药物相互作用是药物设计过程中主要失败的原因。因此,需要准确且强大的筛选过滤器,以便在该过程中尽早预测强效化合物与CYPs的相互作用。近年来,各种CYP亚型的三维结构越来越多地得到解析,开启了基于精确结构研究相互作用的大门。然而,基于配体的方法仍然很流行。这种成功可以通过可用数据的增加以及现有机器学习(ML)方法令人满意的性能来解释。本论文的目的是概述ML应用于CYP数据集的最新成果。特别是,将比较支持向量机、决策树、人工神经网络、k近邻和偏最小二乘法等常用方法,以及数据集和所使用描述符的质量。还将讨论不同方法的一致性。这些模型的准确率常常达到90%,将对其进行分析以突出能够良好预测CYPs结合的关键描述符。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验