Suppr超能文献

用于预测与治疗性及药物代谢动力学/药物毒性相关蛋白相互作用的化合物的机器学习方法。

Machine learning approaches for predicting compounds that interact with therapeutic and ADMET related proteins.

作者信息

Li H, Yap C W, Ung C Y, Xue Y, Li Z R, Han L Y, Lin H H, Chen Y Z

机构信息

Bioinformatics and Drug Design Group, Department of Pharmacy and Department of Computational Science, National University of Singapore, Blk S16, Level 8, 3 Science Drive 2, Singapore 117543, Singapore.

出版信息

J Pharm Sci. 2007 Nov;96(11):2838-60. doi: 10.1002/jps.20985.

Abstract

Computational methods for predicting compounds of specific pharmacodynamic and ADMET (absorption, distribution, metabolism, excretion and toxicity) property are useful for facilitating drug discovery and evaluation. Recently, machine learning methods such as neural networks and support vector machines have been explored for predicting inhibitors, antagonists, blockers, agonists, activators and substrates of proteins related to specific therapeutic and ADMET property. These methods are particularly useful for compounds of diverse structures to complement QSAR methods, and for cases of unavailable receptor 3D structure to complement structure-based methods. A number of studies have demonstrated the potential of these methods for predicting such compounds as substrates of P-glycoprotein and cytochrome P450 CYP isoenzymes, inhibitors of protein kinases and CYP isoenzymes, and agonists of serotonin receptor and estrogen receptor. This article is intended to review the strategies, current progresses and underlying difficulties in using machine learning methods for predicting these protein binders and as potential virtual screening tools. Algorithms for proper representation of the structural and physicochemical properties of compounds are also evaluated.

摘要

预测具有特定药效学和ADMET(吸收、分布、代谢、排泄和毒性)特性的化合物的计算方法,对于促进药物发现和评估很有用。最近,神经网络和支持向量机等机器学习方法已被用于预测与特定治疗和ADMET特性相关的蛋白质的抑制剂、拮抗剂、阻断剂、激动剂、激活剂和底物。这些方法对于结构多样的化合物补充QSAR方法,以及对于无法获得受体三维结构的情况补充基于结构的方法特别有用。许多研究已经证明了这些方法在预测诸如P-糖蛋白和细胞色素P450 CYP同工酶的底物、蛋白激酶和CYP同工酶的抑制剂以及血清素受体和雌激素受体的激动剂等化合物方面的潜力。本文旨在综述使用机器学习方法预测这些蛋白质结合物并作为潜在虚拟筛选工具的策略、当前进展和潜在困难。还评估了用于正确表示化合物结构和物理化学性质的算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验