Mishra Nitish K, Agarwal Sandhya, Raghava Gajendra Ps
Bioinformatics Centre, Institute of Microbial Technology, Chandigarh, India.
BMC Pharmacol. 2010 Jul 16;10:8. doi: 10.1186/1471-2210-10-8.
Different isoforms of Cytochrome P450 (CYP) metabolized different types of substrates (or drugs molecule) and make them soluble during biotransformation. Therefore, fate of any drug molecule depends on how they are treated or metabolized by CYP isoform. There is a need to develop models for predicting substrate specificity of major isoforms of P450, in order to understand whether a given drug will be metabolized or not. This paper describes an in-silico method for predicting the metabolizing capability of major isoforms (e.g. CYP 3A4, 2D6, 1A2, 2C9 and 2C19).
All models were trained and tested on 226 approved drug molecules. Firstly, 2392 molecular descriptors for each drug molecule were calculated using various softwares. Secondly, best 41 descriptors were selected using general and genetic algorithm. Thirdly, Support Vector Machine (SVM) based QSAR models were developed using 41 best descriptors and achieved an average accuracy of 86.02%, evaluated using fivefold cross-validation. We have also evaluated the performance of our model on an independent dataset of 146 drug molecules and achieved average accuracy 70.55%. In addition, SVM based models were developed using 26 Chemistry Development Kit (CDK) molecular descriptors and achieved an average accuracy of 86.60%.
This study demonstrates that SVM based QSAR model can predict substrate specificity of major CYP isoforms with high accuracy. These models can be used to predict isoform responsible for metabolizing a drug molecule. Thus these models can used to understand whether a molecule will be metabolized or not. This is possible to develop highly accurate models for predicting substrate specificity of major isoforms using CDK descriptors. A web server MetaPred has been developed for predicting metabolizing isoform of a drug molecule http://crdd.osdd.net/raghava/metapred/.
细胞色素P450(CYP)的不同同工型代谢不同类型的底物(或药物分子),并使其在生物转化过程中可溶。因此,任何药物分子的命运取决于它们如何被CYP同工型处理或代谢。为了了解给定药物是否会被代谢,需要开发预测P450主要同工型底物特异性的模型。本文描述了一种用于预测主要同工型(如CYP 3A4、2D6、1A2、2C9和2C19)代谢能力的计算机模拟方法。
所有模型均在226个已批准的药物分子上进行训练和测试。首先,使用各种软件计算每个药物分子的2392个分子描述符。其次,使用通用算法和遗传算法选择最佳的41个描述符。第三,使用41个最佳描述符开发基于支持向量机(SVM)的QSAR模型,并通过五倍交叉验证评估,平均准确率达到86.02%。我们还在1个由46个药物分子组成的独立数据集上评估了模型的性能,平均准确率为70.55%。此外,使用26个化学开发工具包(CDK)分子描述符开发基于SVM的模型,平均准确率达到86.60%。
本研究表明,基于SVM的QSAR模型可以高精度地预测主要CYP同工型的底物特异性。这些模型可用于预测负责代谢药物分子的同工型。因此,这些模型可用于了解一个分子是否会被代谢。使用CDK描述符开发用于预测主要同工型底物特异性的高精度模型是可行的。已经开发了一个网络服务器MetaPred,用于预测药物分子的代谢同工型http://crdd.osdd.net/raghava/metapred/ 。