An Wenlin, Chin Jason W
Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom.
Proc Natl Acad Sci U S A. 2009 May 26;106(21):8477-82. doi: 10.1073/pnas.0900267106. Epub 2009 May 14.
Orthogonal, parallel and independent, systems are one key foundation for synthetic biology. The synthesis of orthogonal systems that are uncoupled from evolutionary constraints, and selectively abstracted from cellular regulation, is an emerging approach to making biology more amenable to engineering. Here, we combine orthogonal transcription by T7 RNA polymerase and translation by orthogonal ribosomes (O-ribosomes), creating an orthogonal gene expression pathway in Escherichia coli. We design and implement compact, orthogonal gene expression networks. In particular we focus on creating transcription-translation feed-forward loops (FFLs). The transcription-translation FFLs reported cannot be created by using the cells' gene expression machinery and introduce information-processing delays on the order of hours into gene expression. We refactor the rRNA operon, uncoupling the synthesis of the orthogonal 16S rRNA for the O-ribosome from the synthesis and processing of the rest of the rRNA operon, thereby defining a minimal module that can be added to the cell for O-ribosome production. The minimal O-ribosome permits the rational alteration of the delay in an orthogonal gene expression FFL. Overall this work demonstrates that system-level dynamic properties are amenable to rational manipulation and design in orthogonal systems. In the future this system may be further evolved and tuned to provide a spectrum of tailored dynamics in gene expression and investigate the effects of delays in cellular decision-making processes.
正交、平行和独立的系统是合成生物学的一个关键基础。合成不受进化限制且从细胞调控中选择性抽象出来的正交系统,是使生物学更易于工程化的一种新兴方法。在此,我们将T7 RNA聚合酶的正交转录与正交核糖体(O核糖体)的翻译相结合,在大肠杆菌中创建了一条正交基因表达途径。我们设计并实现了紧凑的正交基因表达网络。特别地,我们专注于创建转录 - 翻译前馈环(FFL)。所报道的转录 - 翻译FFL无法通过使用细胞的基因表达机制来创建,并且会在基因表达中引入数小时量级的信息处理延迟。我们对rRNA操纵子进行重构,将用于O核糖体的正交16S rRNA的合成与rRNA操纵子其余部分的合成和加工解偶联,从而定义了一个可添加到细胞中用于生产O核糖体的最小模块。最小的O核糖体允许合理改变正交基因表达FFL中的延迟。总体而言,这项工作表明系统级动态特性在正交系统中易于进行合理的操纵和设计。未来,该系统可能会进一步进化和调整,以在基因表达中提供一系列定制的动态特性,并研究细胞决策过程中延迟的影响。