Systems, Synthetic, and Physical Biology Graduate Program, Rice University, 6100 Main Street, MS-180, Houston, Texas 77005, United States.
Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States.
ACS Synth Biol. 2022 Sep 16;11(9):2909-2916. doi: 10.1021/acssynbio.2c00079. Epub 2022 Aug 12.
Microbial biosensors sense and report exposures to stimuli, thereby facilitating our understanding of environmental processes. Successful design and deployment of biosensors hinge on the persistence of the microbial host of the genetic circuit, termed the chassis. However, model chassis organisms may persist poorly in environmental conditions. In contrast, non-model organisms persist better in environmental conditions but are limited by other challenges, such as genetic intractability and part unavailability. Here we identify ecological, metabolic, and genetic constraints for chassis development and propose a conceptual framework for the systematic selection of environmental biosensor chassis. We identify key challenges with using current model chassis and delineate major points of conflict in choosing the most suitable organisms as chassis for environmental biosensing. This framework provides a way forward in the selection of biosensor chassis for environmental synthetic biology.
微生物生物传感器可以感知并报告对刺激物的暴露情况,从而帮助我们理解环境过程。生物传感器的成功设计和部署取决于遗传回路微生物宿主的持久性,这个宿主被称为底盘。然而,模型底盘生物可能在环境条件下无法很好地存活。相比之下,非模型生物在环境条件下更能存活,但受到其他挑战的限制,例如遗传的复杂性和部件的不可用性。在这里,我们确定了底盘开发的生态、代谢和遗传限制,并提出了一个用于环境生物传感器底盘系统选择的概念框架。我们确定了使用当前模型底盘的关键挑战,并阐述了在选择最合适的生物体作为环境生物传感底盘时的主要冲突点。这个框架为环境合成生物学中生物传感器底盘的选择提供了一个前进的方向。