Suppr超能文献

超越泊松分布:灵长类顶叶皮层神经元放电时间的规律性增强

Beyond Poisson: increased spike-time regularity across primate parietal cortex.

作者信息

Maimon Gaby, Assad John A

机构信息

Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Neuron. 2009 May 14;62(3):426-40. doi: 10.1016/j.neuron.2009.03.021.

Abstract

Cortical areas differ in their patterns of connectivity, cellular composition, and functional architecture. Spike trains, on the other hand, are commonly assumed to follow similarly irregular dynamics across neocortex. We examined spike-time statistics in four parietal areas using a method that accounts for nonstationarities in firing rate. We found that, whereas neurons in visual areas fire irregularly, many cells in association and motor-like parietal regions show increasingly regular spike trains by comparison. Regularity was evident both in the shape of interspike interval distributions and in spike-count variability across trials. Thus, Poisson-like randomness is not a universal feature of neocortex. Rather, many parietal cells have reduced trial-to-trial variability in spike counts that could provide for more reliable firing-rate signals. These results suggest that spiking dynamics may play different roles in different cortical areas and should not be assumed to arise from fundamentally irreducible noise sources.

摘要

皮质区域在其连接模式、细胞组成和功能结构方面存在差异。另一方面,人们通常认为峰电位序列在整个新皮层遵循类似的不规则动态。我们使用一种考虑了放电率非平稳性的方法,研究了四个顶叶区域的峰电位时间统计。我们发现,视觉区域的神经元不规则地放电,相比之下,联合和运动样顶叶区域的许多细胞表现出越来越规则的峰电位序列。规律性在峰电位间隔分布的形状以及不同试验中的峰电位计数变异性中都很明显。因此,泊松样随机性不是新皮层的普遍特征。相反,许多顶叶细胞在峰电位计数上的试验间变异性降低,这可能提供更可靠的放电率信号。这些结果表明,峰电位动态可能在不同的皮质区域发挥不同的作用,不应被假定为源于根本不可约的噪声源。

相似文献

1
Beyond Poisson: increased spike-time regularity across primate parietal cortex.
Neuron. 2009 May 14;62(3):426-40. doi: 10.1016/j.neuron.2009.03.021.
2
Poisson or not Poisson: differences in spike train statistics between parietal cortical areas.
Neuron. 2009 May 14;62(3):310-1. doi: 10.1016/j.neuron.2009.04.021.
4
Multisensory Interactions Influence Neuronal Spike Train Dynamics in the Posterior Parietal Cortex.
PLoS One. 2016 Dec 29;11(12):e0166786. doi: 10.1371/journal.pone.0166786. eCollection 2016.
5
Extracellular Spike Waveform Dissociates Four Functionally Distinct Cell Classes in Primate Cortex.
Curr Biol. 2019 Sep 23;29(18):2973-2982.e5. doi: 10.1016/j.cub.2019.07.051. Epub 2019 Aug 22.
6
Neural representation of hand kinematics during prehension in posterior parietal cortex of the macaque monkey.
J Neurophysiol. 2009 Dec;102(6):3310-28. doi: 10.1152/jn.90942.2008. Epub 2009 Sep 30.
7
Only coherent spiking in posterior parietal cortex coordinates looking and reaching.
Neuron. 2012 Feb 23;73(4):829-41. doi: 10.1016/j.neuron.2011.12.035.
8
Variability and correlated noise in the discharge of neurons in motor and parietal areas of the primate cortex.
J Neurosci. 1998 Feb 1;18(3):1161-70. doi: 10.1523/JNEUROSCI.18-03-01161.1998.
9
Distinct Properties of Layer 3 Pyramidal Neurons from Prefrontal and Parietal Areas of the Monkey Neocortex.
J Neurosci. 2019 Sep 11;39(37):7277-7290. doi: 10.1523/JNEUROSCI.1210-19.2019. Epub 2019 Jul 24.
10
Lower neuronal variability in the monkey dorsolateral prefrontal than posterior parietal cortex.
J Neurophysiol. 2015 Oct;114(4):2194-203. doi: 10.1152/jn.00454.2015. Epub 2015 Aug 12.

引用本文的文献

2
Artificial transneurons emulate neuronal activity in different areas of brain cortex.
Nat Commun. 2025 Aug 7;16(1):7289. doi: 10.1038/s41467-025-62151-9.
4
The dynamics and geometry of choice in the premotor cortex.
Nature. 2025 Jun 25. doi: 10.1038/s41586-025-09199-1.
5
A unified framework to model synaptic dynamics during the sleep-wake cycle.
PLoS Biol. 2025 Jun 12;23(6):e3003198. doi: 10.1371/journal.pbio.3003198. eCollection 2025 Jun.
7
Neuronal sequences in population bursts encode information in human cortex.
Nature. 2024 Nov;635(8040):935-942. doi: 10.1038/s41586-024-08075-8. Epub 2024 Oct 16.
9
Exact Distribution of the Quantal Content in Synaptic Transmission.
Phys Rev Lett. 2024 May 31;132(22):228401. doi: 10.1103/PhysRevLett.132.228401.
10
Moral considerability of brain organoids from the perspective of computational architecture.
Oxf Open Neurosci. 2024 Mar 12;3:kvae004. doi: 10.1093/oons/kvae004. eCollection 2024.

本文引用的文献

3
Differential attention-dependent response modulation across cell classes in macaque visual area V4.
Neuron. 2007 Jul 5;55(1):131-41. doi: 10.1016/j.neuron.2007.06.018.
4
Temporal properties of posterior parietal neuron discharges during working memory and passive viewing.
J Neurophysiol. 2007 Mar;97(3):2254-66. doi: 10.1152/jn.00977.2006. Epub 2007 Jan 3.
5
Bayesian inference with probabilistic population codes.
Nat Neurosci. 2006 Nov;9(11):1432-8. doi: 10.1038/nn1790. Epub 2006 Oct 22.
6
A cognitive signal for the proactive timing of action in macaque LIP.
Nat Neurosci. 2006 Jul;9(7):948-55. doi: 10.1038/nn1716. Epub 2006 Jun 4.
7
Neural variability in premotor cortex provides a signature of motor preparation.
J Neurosci. 2006 Apr 5;26(14):3697-712. doi: 10.1523/JNEUROSCI.3762-05.2006.
8
Parietal area 5 and the initiation of self-timed movements versus simple reactions.
J Neurosci. 2006 Mar 1;26(9):2487-98. doi: 10.1523/JNEUROSCI.3590-05.2006.
9
Spike count reliability and the Poisson hypothesis.
J Neurosci. 2006 Jan 18;26(3):801-9. doi: 10.1523/JNEUROSCI.2948-05.2006.
10
High response reliability of neurons in primary visual cortex (V1) of alert, trained monkeys.
Cereb Cortex. 2006 Jun;16(6):888-95. doi: 10.1093/cercor/bhj032. Epub 2005 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验