Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261.
J Neurosci. 2019 Sep 11;39(37):7277-7290. doi: 10.1523/JNEUROSCI.1210-19.2019. Epub 2019 Jul 24.
In primates, working memory function depends on activity in a distributed network of cortical areas that display different patterns of delay task-related activity. These differences are correlated with, and might depend on, distinctive properties of the neurons located in each area. For example, layer 3 pyramidal neurons (L3PNs) differ significantly between primary visual and dorsolateral prefrontal (DLPFC) cortices. However, to what extent L3PNs differ between DLPFC and other association cortical areas is less clear. Hence, we compared the properties of L3PNs in monkey DLPFC versus posterior parietal cortex (PPC), a key node in the cortical working memory network. Using patch-clamp recordings and biocytin cell filling in acute brain slices, we assessed the physiology and morphology of L3PNs from monkey DLPFC and PPC. The L3PN transcriptome was studied using laser microdissection combined with DNA microarray or quantitative PCR. We found that in both DLPFC and PPC, L3PNs were divided into regular spiking (RS-L3PNs) and bursting (B-L3PNs) physiological subtypes. Whereas regional differences in single-cell excitability were modest, B-L3PNs were rare in PPC (RS-L3PN:B-L3PN, 94:6), but were abundant in DLPFC (50:50), showing greater physiological diversity. Moreover, DLPFC L3PNs display larger and more complex basal dendrites with higher dendritic spine density. Additionally, we found differential expression of hundreds of genes, suggesting a transcriptional basis for the differences in L3PN phenotype between DLPFC and PPC. These data show that the previously observed differences between DLPFC and PPC neuron activity during working memory tasks are associated with diversity in the cellular/molecular properties of L3PNs. In the human and nonhuman primate neocortex, layer 3 pyramidal neurons (L3PNs) differ significantly between dorsolateral prefrontal (DLPFC) and sensory areas. Hence, L3PN properties reflect, and may contribute to, a greater complexity of computations performed in DLPFC. However, across association cortical areas, L3PN properties are largely unexplored. We studied the physiology, dendrite morphology and transcriptome of L3PNs from macaque monkey DLPFC and posterior parietal cortex (PPC), two key nodes in the cortical working memory network. L3PNs from DLPFC had greater diversity of physiological properties and larger basal dendrites with higher spine density. Moreover, transcriptome analysis suggested a molecular basis for the differences in the physiological and morphological phenotypes of L3PNs from DLPFC and PPC.
在灵长类动物中,工作记忆功能依赖于皮质区域分布式网络的活动,这些区域显示出与延迟任务相关的不同活动模式。这些差异与每个区域中神经元的独特特性相关,并且可能取决于这些特性。例如,初级视觉和背外侧前额叶皮层(DLPFC)之间的第三层锥体神经元(L3PN)有显著差异。然而,L3PN 在 DLPFC 和其他联合皮质区域之间有多大程度的差异尚不清楚。因此,我们比较了猴子 DLPFC 与后顶叶皮层(PPC)中 L3PN 的特性,PPC 是皮质工作记忆网络中的关键节点。使用急性脑切片中的膜片钳记录和生物胞嘧啶细胞填充,我们评估了来自猴子 DLPFC 和 PPC 的 L3PN 的生理学和形态。使用激光微解剖结合 DNA 微阵列或定量 PCR 研究了 L3PN 的转录组。我们发现,在 DLPFC 和 PPC 中,L3PN 均分为规则放电(RS-L3PN)和爆发(B-L3PN)生理亚型。虽然单个细胞兴奋性的区域差异较小,但 B-L3PN 在 PPC 中很少见(RS-L3PN:B-L3PN,94:6),但在 DLPFC 中却很丰富(50:50),表现出更大的生理多样性。此外,DLPFC L3PN 具有更大和更复杂的基底树突,并且树突棘密度更高。此外,我们发现数百个基因的表达差异,表明 L3PN 表型在 DLPFC 和 PPC 之间的差异存在转录基础。这些数据表明,在工作记忆任务期间,DLPFC 和 PPC 神经元活动之间观察到的先前差异与 L3PN 细胞/分子特性的多样性有关。在人和非人类灵长类动物新皮层中,背外侧前额叶皮层(DLPFC)和感觉区域之间的第三层锥体神经元(L3PN)有显著差异。因此,L3PN 的特性反映并可能有助于 DLPFC 中执行的更复杂的计算。然而,在联合皮质区域之间,L3PN 的特性在很大程度上尚未得到探索。我们研究了猕猴 DLPFC 和后顶叶皮层(PPC)中 L3PN 的生理学、树突形态和转录组,这两个是皮质工作记忆网络中的关键节点。来自 DLPFC 的 L3PN 具有更大的生理特性多样性和更大的基底树突,并且树突棘密度更高。此外,转录组分析表明,DLPFC 和 PPC 中 L3PN 生理和形态表型差异的分子基础。